Printed Page 1 of 2					Sub Code:NEC508												
Paner Id:	130522	Roll No:															

B.TECH (SEM V) THEORY EXAMINATION 2019-20 FUNDAMENTALS OF E.M. THEORY

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If you require any missing data, choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a) Explain the significance of displacement current.
- b) Write and explain differential form of Faraday's law.
- c) Explain electric susceptibility.
- d) Define Polarization.
- e) What happens when a solid conductor is placed in an electric field?
- f) Find the stored energy in the system for four identical charges Q = 2nc, at the corners 1
- g) A charge $Q_2 = 121 \times 10^{-9}$ c is located in vacuum at P_2 (-0.03, 0.01, -0.04). Find force on Q_2 due to $Q_1 = 100 \mu c$ at P_1 (0.03, 0.08, 0.02). All distances in meters.
- h) Transform the vector $4f_x 2f_y 4f_z$ into spherical co-ordinates at point P(x=-2, y=-3, z=4).
- i) Given $A = 5f_x 2f_y f_z$ find the expression of a unit vector f_B such that f_B is parallel to A. j) Given two vectors $A = 4f_y + 10f_z$ and $B = 2f_x + 3f_y$. Find the projection of A and B.

SECTION B

2. Attempt any three of the following:

 $10 \times 3 = 30$

- a) What do you understand by skin depth? Show that in case of a semi-infinite solid conductor the skin depth S is given by $S = \sqrt{\frac{2}{\omega\mu\sigma}}$.
- b) Obtain the equation of continuity in integral and differential form.
- c) State and prove integral and differential form of Maxwell's equation.
- d) What do you mean by displacement current? Derive an expression for displacement current density.
- e) Find the Laplacian of the following scalar fields:-
 - 1) $V = e^{-z} \sin 2x \cosh y$
 - 2) $W = 10r \sin^2\theta \cos \phi$

Printed Page	Sub Code:NEC508													
Paper Id:	130522	Roll No:												

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- a) State and explain the Gauss's law of electromagnetic in integral form.
- b) Prove that the net power flowing out of a given volume V is equal to the time rate of decrease in energy stored within volume V minus the conduction losses.

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- a) Derive the expression for electric field intensity due to infinitely long charged wire (surface charge).
- b) Show that for uniform plane wave in perfect medium, \vec{E} and \vec{H} are normal to each other and the ratio of their magnitude is constant of the medium.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- a) Derive an expression for magnetic field intensity due to infinitely long straight conductor using Ampere's circuital law.
- b) Find the electric field intensity due to finite line of charge using cylindrical system.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- a) What is transmission line? Discuss various types of transmission lines.
- b) Derive Poisson's and Laplace's equations from fundamentals.

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- a) Can a static magnetic field exist in the interior of perfect conductor? Explain.
- b) Derive expression or the potential at a point outside a hollow sphere having a uniform charge density.