(Following	Paner	ID and	Roll	No. to	he filled	in v	our A	nswer	Book)
(T.OHO MINE	Taher	IL and	TAGHT	LYU. LU	DC HHCG	ana y	oui A	THE SALCE	DUURJ

PA	PE	\mathbf{R}	ID	21	17

	generalisation	and the state of	N	The second	or accounting	Tr. Williams	- Williams	-	Description of the last	No. of Concession,
	1 1	9			1 5	1 1	1 1			1
WWW RE WAT	1 1				1 8	1 1				1 1
ROH NO	1 1			Ł I	1 1	1 1			- 1	i i
TAOM TAO.	1 1	- 8	. 1		: 1	1 1		1 1		
		i			L				L	L

B. Tech.

(SEMESTER-V) THEORY EXAMINATION, 2012-13

INTEGRATED CIRCUITS

Time: 3 Hours |

[Total Marks: 100

Section - A

1. Attempt all question parts:

- $10 \times 2 = 20$
- (a) For Widlar Current source assume the $I_{ref} = 1$ mA and $R_2 = 5$ K Ω , neglect base current and find I_{C2} .
- (b) List the advantages of Widlar current source.
- (c) Find the voltage gain of the CE amplifier with active load circuit when both devices are active.
- (d) Define the term "Sensitivity".
- (e) Give reason "The voltage gain of the operational amplifier decreases at high frequencies".
- (f) Write some applications of analog multiplier.
- (g) What are the parameters determine the performance of VCO?
- (h) Calculate the time period of Astable Multivibrator having $R_1=R_2=2~K\Omega$, $R=4~K\Omega~and~C=0.01~uF.$
- (i) Why CMOS NAND is preferred over CMOS NOR?
- (j) List the disadvantages of Sallen Key Unity Gain filter.

Section-B

2. Attempt any **three** question parts:

 $10 \times 3 = 30$

- (a) Derive a voltage gain expression for Dual Input Balanced Output Differential Amplifier.
- (b) With neat circuit diagram explain the generation of square wave form using Op-Amp astable multivibrator and calculate its total time period.

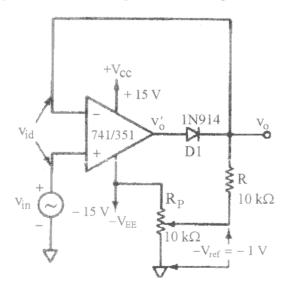
- (c) Design a Wein-Bridge Oscillator circuit and derive expression for sustained oscillations.
- (d) (i) Implement the following expression using AOI gate logic.

$$F = \overline{A(B + CD)}$$

- (ii) Explain the transistor sizing procedure for a four input NOR gate.
- (e) Design a filter using the Sallen Key unity gain low pass active filter to meet the following specifications: Assume $C = 0.027 \mu f$.
 - (i) Rolloff Rate: 40 dB/decade
 - (ii) Critical Frequency: 4 kHz
 - (iii) Pass band as flat as possible
 - (iv) Gain of 10 at DC

Section - C

Attempt all questions:


 $10 \times 5 = 50$

uptuonline.com

3. Attempt any **two** parts:

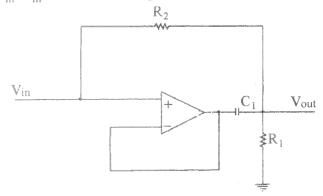
 $5 \times 2 = 10$

(a) Draw the output of the following circuit and explain its working.

- (b) Draw a Cascode MOS current mirror and calculate its output impedance.
- (c) How Current Mirror can be used as an ACTIVE LOAD ? Draw the BJT differential amplifier circuit using ACTIVE LOAD.

4. Attempt any **two** parts:

 $5 \times 2 = 10$


- (a) What is the effect of V_0 on I_0 in MOS Current Mirrors?
- (b) Draw and explain sample and hold Op-Amp circuit.
- (c) Name the circuit that is used to detect the peak value of the non-sinusoidal waveforms. Explain the operation with neat circuit diagram.
- 5. Attempt any **two** parts:

 $5 \times 2 = 10$

- (a) Two CMOS inverters operating from a 5-V supply have V_{IH} and V_{IL} of 2.42 V and 2.00 V and corresponding outputs of 0.4 and 4.6, respectively, and are connected as a latch. Approximating the corresponding transfer characteristic of each gate by a straight line between threshold points, sketch the latch open-loop transfer characteristic. What are the coordinates of point B (unstable point)? What is the loop gain at B?
- (b) Draw and explain monostable multivibrator using 555 timer and calculate its time period.
- (c) (i) Design a precision peak rectifier and explain its working operation.
 - (ii) Using a 10 nF capacitor, find the value of R that yields an output pulse of 100 µs in the monostable circuit.
- 6. Attempt any **one** part:

 $10 \times 1 = 10$

- (a) Draw the KHN Biquad filter and derive transfer function of the BPF and LPF from that.
- (b) Find the V_{in} / I_{in} for the following circuit :

7. Attempt any **two** parts:

 $5 \times 2 = 10$

- (a) Draw and explain the PLL block diagram.
- (b) Design a parallel-flash ADC and explain its working.
- (c) Draw and explain a GILBERT analog multiplier.