Printed Pages: 2 Sub Code: NEC011

Paper Id: 1 3 1 2 5 4

Roll No.

B.Tech. (SEM 6th) THEORY EXAMINATION 2018-19 Digital Signal Processing

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. What do you mean by Gibbs phenomenon?
- b. Calculate the Chebyshev Polynomial $C_3(x)$.
- c. What is the difference between Linear & Circular Convolution?
- d. What is the computational complexity of the direct form-I & direct form-II.
- e. Find the DFT of the given sequence, $x(n) = \{1, -2, 3, 4\}$ by Linear Transformation technique.
- f. State & Prove the multiplication property of DFT.
- g. Compare the number of complex addition & complex multiplication for FFT & direct computation of the DFT.
- h. What do you mean by analog & digital filters?
- i. What do you mean by Frequency Compression Effect?
- j. Write the expression for Blackman's window function.

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

a. Find the 8-point DFT of the given sequence

$$x(n) = 18 * \sin(\frac{n\pi}{8} + 3)$$

Also find its Phase & magnitude spectrum.

- b. Derive & Draw the flow graph for DIT FFT algorithm for given sequence x (n) = 2^{n+1} , where n = 0, 1, 2,......, 7
- c. Why we are using Kaiser Window? Give your justification using suitable example.
- d. Draw the Direct form- I, Direct form-II, Cascade & Parallel realization of the given systems function

$$H(z) = \frac{z(z+5)}{z^2 + 0.5z + 0.2}$$

e. Briefly explain the concept of Bilinear Transformation Method.

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Derive & Draw the flow graph for DIF FFT algorithm for given sequence x (n) = 2^{n+4}
- (b) Find DIF IFFT algorithm for given sequence $X(k) = \{36, -4+j9.656, -4+4j, -4+j1.656, -4, -4-j1.656, -4-j4, -4-j9.656\}.$

4. Attempt any *one* part of the following:

$$10 \times 1 = 10$$

Sub Code: NEC011

(a) Design a Digital Butterworth filter to satisfy the following constraints

$$\begin{array}{ll} 0.65 & \leq \left| \hspace{.05cm} H(e^{jw}) \hspace{.1cm} \right| \leq 1 & \hspace{0.5cm} ,0 \hspace{.1cm} \leq w \leq 0.2\pi \\ & \left| \hspace{.05cm} H(e^{jw}) \hspace{.1cm} \right| \leq 0.1 & \hspace{0.5cm} ,0.5\pi \leq w \leq \pi \end{array}$$

(b) Design a Digital Chebyshev filter to satisfy the following constraints

$$\begin{array}{ll} 0.42 & \leq \left| \ H(e^{jw}) \ \right| \leq 1 & \quad ,0 \ \leq w \leq \pi/4 \\ & \left| \ H(e^{jw}) \ \right| \leq 0.8 & \quad ,\pi/2 \leq w \leq \pi \end{array}$$

5. Attempt any *one* part of the following:

$$10 \times 1 = 10$$

(a) Convert the analog Filter with system function

$$H(s) = \frac{81}{[(s+0.4)^2 + 81]}$$

in to a digital IIR filter using Bilinear Transformation. The Digital Filter should have a resonant Frequency of $w_r=0.42\pi$

- (b) Enlist any five properties of DFT & prove it each & every one.
- 6. Attempt any *one* part of the following:

$$10 \times 1 = 10$$

(a) The desired response of a low pass filter is

$$H(e^{jw}) = \begin{cases} e^{-j6w} &, -\frac{3\pi}{8} \le w \le \frac{3\pi}{8} \\ 0 &, \frac{3\pi}{8} \le w \le \pi \end{cases}$$

Determine H (e^{jw}) for M = 7 using Blackman window

(b) Explain the realization of linear phase FIR filter for even and odd samples. Obtain FIR linear phase cascade realization of the system function.

$$H(z)=(1+0.5z^{-1}+z^{-2})(1+0.25z^{-1}+z^{-2})$$

7. Attempt any *one* part of the following:

$$10 \times 1 = 10$$

- (a) Derive & Draw the flow graph for inverse FFT algorithm.
- (b) What is difference between simple convolution & overlap adds method? Explain both with suitable example.