

Printed Pages : 4
TEE-301
(Following Paper ID and Roll No. to be filled in your Answer Book)

$\begin{array}{ll}\text { PAPER D. 2047. } & \text { Roll No. } \square \\ \text { B. Tech. }\end{array}$

(SEM. III) EXAMINATION, 2007-08

BASIC SYSTEM ANALYSIS

- Time : 3 Hours)
[Total Marks : 100
Note : Attempt all questions.
1 Attempt any four parts of the following : $\mathbf{5 \times 4 = 2 0}$
(a) Calculate energies and powers of the following 5 signals :
(i) $e^{-5 t} u(t)$ (ii) $2 \sin 2 t+3 \cos \pi t$
(b) Calculate the following integrals :
(i)

$$
\int_{-\infty}^{5}(5+\cos t) \delta(t-10) d t
$$

(ii)

$$
\int_{-\infty}^{\infty}(t-2)^{2} \delta(t-2) d t
$$

(iii) $\int^{\infty} e^{-a t^{2}} \delta(t-10) d t$
(c) Differentiate between time-invariant and time-variant systems. Give a suitable example for both types of systems.
(d) What do you understand by linear systems ? 5 Show that the system described by the following differential equation is linear

$$
\dot{y}(t)+t y(t)=r(t)
$$

(e) Sketch the waveforms of the following signals:
(i) $\quad x(t)=u(t)-u(t-2)$
(ii) $\quad x(t)=u(t+1)-2 u(t)+u(t-1)$
(iii) $\quad y(t)=r(t+1)-r(t)+r(t-2)$
where $u(t)$ and $r(t)$ are unit step and ramp signals respectively.
(f) Consider the R-L-C series circuit in Fig. 1 which 5 is closed at $t=0$. Write the loop equation for this circuit assuming zero initial condition. What are three different possible situations of the transient solution of above equations ? Describe the corresponding relationship R, L and C for each of the situations.

2 Attempt any two parts of the following
(a) Determine the effect of each of the following 10 symmetry conditions on the coefficients of the Fourier series expansion for $f(\theta)$ and obtain the formula for those coefficients which do not vanish
(1)
$f(\theta)=f(\pi-\theta)$
(2) $f(\theta)=-f(\pi-\theta)$
(b) What are Dirichlet's conditions ?
(1) Find the Fourier transform of $x(t)=\delta(t)$
(2) Find the inverse Fourier transform of

$$
X(j w)=2 \pi \delta(w)
$$

(c) Find the Fourier series of the signal shown in

Fig. 2. using exponential form.

Fig. 2

Attempt any two parts of the following

(a) Use the Laplace transform to determine the $\mathbf{1 0}$ output of a system represented by the differential equation

$$
\ddot{y}(t)+5 \dot{y}(t)+6 y(t)=2 \dot{x}(t)+x(t)
$$

in response to the input $x(t)=u(t)$. Assume that all initial conditions are zero.
(b) Prove the following results :
(1) $L\left[y\left(\frac{t}{a}\right)\right]=a Y(s), a>0$
(2) $L[t y(t)]=\frac{d}{d s} Y(s)$
where $Y(s)$ is Laplace transform of $y(t)$.
(c) Find the Laplace transform of the wave form shown in Fig 3. It is to be noted that $v(t)=0$ for $t>2 T$ and $t<0$.

Fig. 3
4 Attempt any two parts of the following : $\quad \mathbf{2 \times 1 0}=\mathbf{2 0}$
(a) Find the state transition matrix for $\quad 10$

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-6 & -5
\end{array}\right]
$$

Find the corresponding resolvent matrix also.
(b) Find the output response of the system

10 described by the following state variable formulation.

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) \text { to unit step input }
$$

It is given that $C=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$ and $x^{T}(0)=\left[\begin{array}{ll}1 & 1\end{array}\right]$.
(c) Consider the state variable model of a second-order system represented as

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{l}
0 \\
2
\end{array}\right] r
$$

$\left[\begin{array}{l}x_{1}(0) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right] ; \quad r=$ unit step.
Find the state response $x(t), t>0$
5 Attempt any two parts of the following : $\quad 2 \times 10=20$
(a) Find the Z-transform of the sequences 10
(i) $\delta(k)$ (ii) $u(k)$ (iii) $e^{ \pm \beta k} ; k \geq 0$
(b) Prove that $\lim _{z \rightarrow \infty} F(z)=f(0)$
$\lim _{k \rightarrow \infty} f(k)=\lim _{z \rightarrow 1}\left[\left(\frac{z-1}{z}\right) F(z)\right]$
where $F(z)$ is Z transform of $f(k)$.
(c) Obtain the Z-inverse of $F(z)$ for the following : 10
(1) $\frac{z}{(z-0.4)},|z|>0.4$
(2) $\frac{Z}{(z-0.4)},|z|<0.4$

