uptuonline commune that the graph shown in figure 3 is isomorphic. 6

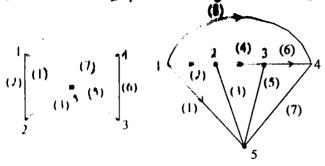
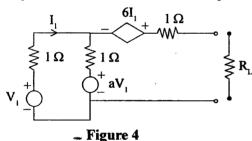
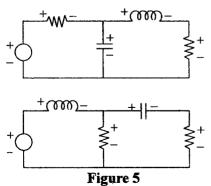
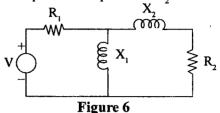




Figure 3

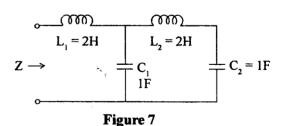
- 2. Attempt any three parts of the following:
 - (a) (i) Write the super position theorem.
 - (ii) For the network shown determine Thevenin's equivalent source and the series impedance.


(b) Verify Tellegen theorem for the pair of networks shown. Select suitable values in the two circuits. 7

TEE303/VEQ-15042

Z

- (c) Write the statement of maximum power transfer theorem and also prove that maximum power can be transferred if load is complex conjugate of internal impedance.
- (d) Determine X₁ and X₂ is terms of R₁ and R₂ to give maximum power dissipation in R₂.


- Attempt any two parts of the following:
- (a) Construct the Bode plot for the following transfer functions:

$$G(s) = \frac{10(s+10)}{s(s+5)(s+2)}.$$

(b) Test whether the system represented by following characteristic equation is stable or not:

$$2s^4 + s^3 + 3s^2 + 5s + 10 = 0.$$

(c) For the given L-C network find the transform impedance Z(s).

- 4. Attempt any two parts of the following:
 - (a) Derive the condition for reciprocity and symmetry in case of (a) h-parameters, (b) Y-parameters. 10

TEE303/VEQ-15042

3

[Turn Over

uptuonline.com

uptuonline.com

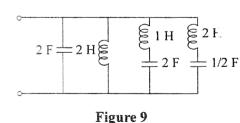
10

10

1525

polynomials for the given network.

Figure 8 Obtain the transmission parameters in term of


An impedance function is given by:

Z-parameters and Y-parameters.

$$Z(s) = \frac{(s+1)(s+5)}{s(s+3)(s+7)},$$
find the R-C representation of foster-I and II forms. 10½

For the constant-k, low pass filter, derive/find out the two (b) cutoff frequencies.

Find the driving point impedance as a quotient of 101/2

