Printed pages: 02 Sub Code: NEN 011

Paper Id: 121613 Roll No:

B.TECH (SEM VI) THEORY EXAMINATION 2017-18 DIGITAL CONTROL SYSTEM

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a) Explain acquisition time for sample and hold operation.
- b) If $X(z) = 2+3Z^{-1}+4Z^{-2}$ then find the initial and final value of the corresponding sequence.
- c) What are advantages of a control system designing with a high gain feedback?
- d) What do you by insensitive controllers?
- e) Explain the concepts of observability.
- f) What do you mean by the state of digital processor?
- g) What are the uses of Lyapunov stability in adaptive control system?
- h) What do mean by the stability in sense of Lyapunov?
- i) Explain the principle of optimality.
- j) What do you mean by dynamic programming?

SECTION B

2. Attempt any three of the following:

 $10 \times 3 = 30$

- a) Derive the transfer function of the following data hold circuit.
 - i. Zero order hold circuit.
 - ii. First order hold circuit.
- b) Explain general structure of a digital structure of a control system.
- c) Discuss some merits and demerits if representing state model into
 - i. Physical variable form
 - ii. Phase variable form
 - iii. Conical variable form
- d) Explain Jury stability criterion. Also list the difference between the Jury stability test and stability analysis using bilinear transformation coupled with Routh stability criterion.
- e) Derive an expression for the discrete Euler-Lagrange equation.

3. Attempt any one part of the following:

 $10 \times 1 = 10$

a) Obtain the Z-transform of the following:

(i)
$$X(S) = \frac{a}{s^2(s+a)}$$

(ii)
$$X(5) = \frac{s}{(s^2 - at^2)}$$

b) What do you understand by z-transform? Explain the relationship between the Laplace transform and the Z-transform. Define the constant-Damping Loci.

4. Attempt any one part of the following:

 $10 \times 1 = 10$

- a) What do you mean by transient accuracy of a non unity feedback discrete time system?
- b) Explain the designing of a digital compensator using Root Locus.

5. Attempt any one part of the following:

 $10 \times 1 = 10$

a) A system is described by-

$$\dot{\mathbf{x}} = \begin{bmatrix} -1 & -4 & -1 \\ -1 & -6 & -2 \\ -1 & -2 & -3 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \mathbf{u}$$

$$\mathbf{y} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \mathbf{x}$$

Find the transfer function and construct the signal flow graph.

b) Construct the state model for the system characterized by the differential equation-

$$\frac{d^2y}{dz^2} + \frac{6d^2y}{dz^2} + \frac{11dy}{dz} + 6y = u$$

Give the block diagram representation of the state model.

6. Attempt any one part of the following:

 $10 \times 1 = 10$

a) Consider the discrete time unity feedback control system (T=1 sec) whose open loop pulse transfer function is given by

$$G(z) = \frac{K(0.3679Z + 0.2642)}{(Z - 0.3679)(Z - 1)}$$

Determine the range of K for stability by use of the Jury stability test.

b) Explain in detail the second method of the Liapunov.

7. Attempt any one part of the following:

 $10 \times 1 = 10$

- a) Explain and derive an expression for the discrete maximum or minimum principle.
- b) Explain the time-optimal control with energy constraint in detail.