Printed Pages—4

EIC501

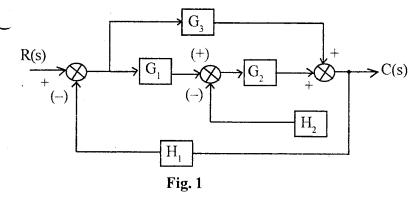
(Following Paper ID and Roll No			•			
PAPER ID: 2121 Roll No.						

B.Tech.

(SEM. V) THEORY EXAMINATION 2011-12

CONTROL SYSTEMS—I

Time: 3 Hours


Total Marks: 100

Note:—Attempt all the questions.

1. Attempt any **four** parts of the following:

 $(5 \times 4 = 20)$

- (a) Discuss the effect of feedback on the following:
 - (i) Overall gain (ii) Stability (iii) Noise and Disturbance.
- (b) Compare open loop control system with closed loop control system.
- (c) Find the transfer function for the system whose block diagram representation is shown in fig. 1.

EIC501/KIH-26584

[Turn Over

- (d) Define the following:
 - (i) Path (ii) Forward Path (iii) Path Gain (iv) Loop
 - (v) Non touching loop.
- (e) Write notes on (i) Control valves (ii) RTDs (iii) DC Tachometer Generator.
- 2. Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) For the following state equation, determine the transfer function between Y(s) U(s) according to the formula:

$$\frac{Y(s)}{U(s)} = \left(C[SI - A]^{-1}B + D\right)$$

$$A = \begin{bmatrix} 0 & 3 \\ -2 & -3 \end{bmatrix} B = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$$
$$C = \begin{bmatrix} 1 & 0 \end{bmatrix} D = 1$$

(b) Construct the state model for a system characterized by the differential equations:

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y = 4$$

Give the block diagram representation of the state model.

(c) What is state transition matrix? Discuss its properties.Also discuss controllability.

EIC501/KIH-26584

2

3. Attempt any **four** parts of the following:

- (a) Define the following:
 - (i) Peak Overshoot (ii) Stelling time (iii) Rise Time
 - (iv) Steady state error.
- (b) Derive expressions for Peak overshoot for the second order control system.
- (c) Measurement conducted on a servomechanism show the system response to be

$$c(t) = 1 + 0.2 e^{-60 t} -1.2 e^{-10 t}$$

when subjected to a unit step input. Obtain the expression for the closed loop transfer function.

(d) The open loop transfer function of a servo system with unity feedback is

$$G(s) = \frac{10}{s(0.1\,s+1)}$$

Evaluate the static error constants (K_p , K_v and K_a).

- (e) Discuss the effect of adding a zero to a system.
- 4. Attempt any two parts of the following: (10×2=20)
 - (a) Determine whether the largest time constant of the characteristic equation given below is greater than less than, or equal to 1.0 sec:

$$s^3 + 4s^2 + 6s + 4 = 0$$
.

EIC501/KIH-26584

3

[Turn Over

 $(5 \times 4 = 20)$

(b) Determine the range of values of k such that the characteristic equation:

$$s^3 + 3(k + 1)s^2 + (7k + 5)s + (4k + 7) = 0$$

has roots more negative than s = -1.

- (c) State the Routh stability criterion. Discuss its advantages over Hurwitz Stability criterion. Also discuss relative stability concept.
- 5. Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) Sketch the Bode plot for the system having

G(s) H(s) =
$$\frac{20}{s(0.1s+1)}$$
.

- (b) (i) Establish correlation between frequency domain response and time domain response.
 - (ii) Define the following:
 - (1) Resonant Peak
 - (2) Gain Margin
 - (3) Phase Margin
- (c) Sketch the Nyquist plot for the following system having

$$G(s) = \frac{100}{s(s+10)}$$
, $H(s) = 1$ consider negative feedback.

Comment on the stability of the system.

EIC501/KIH-26584

18650