uptuonline.com

Printed pages:4					EIC	EIC501	
(Following pa	per code a	and roll No. to	be filled	in you	ransw	er bo	ok)
Paper code:	132502	Roll No.					

B TECH (SEM V) THEORY EXAMINATION 2014-15 CONTROL SYSTEM-I

aktuonline.com

uptuonline.com

aktuonline.com

TIME: 3 Hours

Total Marks: 100

Note: Attempt questions from each Section as per instructions.

SECTION-A

1. Attempt ALL parts.

2*10=20

- a. Classify control Systems and give the merits and demerits of open loop control system & closed loop control system.
- b. For the forward path, TF given by

G(s) = 20 (s+2). Find Error coefficients. s (s+3)(s+4)

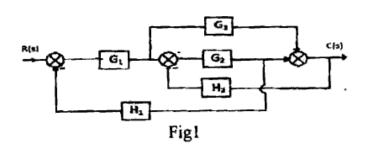
- c. Explain the Incremental Encoder?
- d. Find the breakaway points of

$$G(s)H(s) = \frac{K}{s + 4(s^2 + 4s + 20)}$$

- Find the Gain margin of $G(s) = \frac{80}{s + 2 (s+20)}$
- Under damped systems are most preferred system. Explain why?
- How transfer function can be obtained from state equations. Explain,
- h. A system has a transfer function $\frac{c}{R} = \frac{20}{s+10}$. Determine its Unit Impulse Response.
- Explain Mason Gain Formula briefly.
- Find the phase system $G(s)H(s) = \frac{e^{-0.2s}}{s(s+1)}$ for $\omega=5$.

uptuonline.com

SECTION-B


2. Attempt any SIX parts.

5*6=30

Consider the following equation, which may be the characteristic equation of linear control systems. Find the system is stable or unstable.

 $5^{5}+45^{4}+85^{3}+85^{2}+75+4=0$

Determine the transfer function C/R of the system shown uptuonline.com in Fig.1 using block diagram reduction techniques.

For the system $G(s)H(s) = k(1+s)^2/s^3$, find the range of 'k' for the system to be stable.

aktuonline.com Derive the peak in frequency response (M_r) and ω_r for Second Order Control System?

Consider the differential equation given as :- $\ddot{y} + 6\ddot{y} +$ $11\dot{y} + 6y = \ddot{u} + 8\ddot{u} + 17\dot{u} + 8u$. Draw Block diagram using parallel decomposition.

Explain the nature of response terms contributed by various types of roots and conclude about the BIBO stability. Give the difference between :-

(i). Absolute and relative stability.

unit step and unit ramp inouts.

(ii) BIBO and Asymptotic stability for a continuous data system.

Determine the type and order of the unity feedback control systems whose open-loop transfer functions are $G(S)=K/S(S^2+4S+200)$ Find also the static error coefficients and the errors for

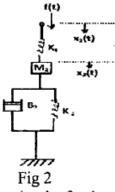
aktuonline.com

aktuonline.com

uptuonline.com

uptuonline.com

3. Attempt any two parts:

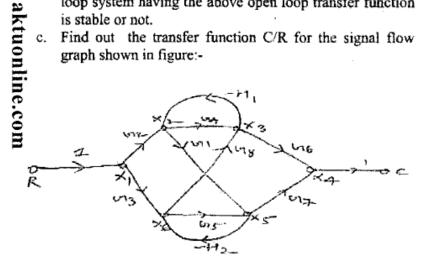

10*2=20

uptuonline.com

aktuonline.com

aktuonline.com

a. Draw the equivalent mechanical system of the given system(fig 2). Hence, write the set of equilibrium equatons for it and obtain electrical analogus circuits using F-V analogy



Sketch the Nyquist plot for the system having

$$G(s)H(s) = \frac{1+4s}{s} + \frac{1+2s}{1+2s}$$

Using the Nyqist criterion, determine whether the closed loop system having the above open loop transfer function is stable or not.

Find out the transfer function C/R for the signal flow graph shown in figure:-

4. Attempt any three parts

10*3=30

- Draw the Bode Plot for the transfer function $G(S)=36 (1+0.2 s)/ s^2 (1+0.05s)(1+0.01s)$ From the bode plot determine
 - a) Phase crossover frequency
 - b) Gain crossover frequency
 - c) Gain Margin
 - d) Phase Margin
- Determine the type and order of the unity feedback uptuonline.com control systems whose open-loop transfer functions are

a)
$$G(S)=K/S(S^2+4S+200)$$

Find also the static error coefficients and the errors for unit step and unit ramp inputs.

- A Second -order system has overshoot of 50% and period of oscillation 0.2 s in step response .determine resonant peak, resonant frequency and bandwidth.
- d. The closed -loop transfer function of certain second order unity feedback control systems are given below. Determine the type of damping in the systems:

i.
$$C(S)/R(S) = 8/S^2 + 3S + 8$$

i.
$$C(S)/R(S) = 4/S^2 + 16$$