Printed pages: 03 Sub Code: EIC 501

Paper Id:

3 0 3 7

Roll No.

B.TECH (SEM V) THEORY EXAMINATION 2017-18 CONTROL SYSTEM-I

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all questions in brief:

 $2 \times 10 = 20$

- a). Distinguish between open loop system & closed loop system.
- b). The breakaway points on the root locus occurs at
 - (i)Imaginary axis
 - (ii) real axis
 - (iii)Multiple roots of characteristics equation
 - (iv) either (i) and (ii)
- c). If the characteristics equation of a closed loop system is

$$1 + \frac{k}{s(s+1)(s+2)} = 0$$
,

the centroid of the root locus will be at.....

- d). BIBO means....
- e) . The condition of a system to be controllable is
- f). Routh Hurwitz criterion is valid only for real coefficients of the characteristics of the characteristic equation. (True/ False)
- g). What are the limitations of Routh Hurwitz criterion?
- h). Explain Nyquist stability criterion.
- i). Explain the following (i) Gain Margin (ii) Phase Margin.
- j). Explain the following (i) Rise time (ii) settling time.

SECTION - B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

a.) Design SFG for the following equation:

$$(i)Y_2 = a_1 \frac{dY_1}{dt}, (ii)Y_3 = \frac{d^2Y_2}{dt^2} + \frac{dY_1}{dt} - Y_1, (iii)\frac{d^2Y}{dt^2} + \frac{2}{3}\frac{dY}{dt} + \frac{11}{2}Y = X$$

b. Construct the polar plat for the following transfer function.

$$(i)G(s) = \frac{10(s+2)(s+4)}{s(s^2 - 3s + 10)} \quad (ii)G(s) = \frac{2(s+1)}{s^2}$$

c. Sketch the Nyquist plot for a unity feedback system having open loop transfer function given by

$$(i)G(s) = \frac{k}{s(1+s)(1+2s)(1+3s)}$$
 Determine the range of value of k for which the system is stable

d. The closed loop transfer function of unity feedback control system is given by:

$$\frac{C(s)}{R(s)} = \frac{10}{10(s^2 + 4s + 5)}$$
 Determine (i) damping ratio (ii) natural undammed frequency (iii) percentage peak overshoot (iv) Expression for error.

e. For the unity feedback system whose open loop transfers function is:

$$(i)G(s) = \frac{50}{(1+0.1s)(1+2s)}$$
 Find the position velocity and acceleration error constant

SECTION - C

3. Attempt any one part of the following:

 $10 \times 1 = 10$

a. Find the equivalent transfer function of three parallel blocks $G_1(s) = 1/s + 1$ $G_2(s) = 1/s + 4$ and $G_3(s) = s + 4/s + 5$

b. a unity feedback control system has an open loop transfer function $(i)G(s) = \frac{10}{s(s+2)}$, find the rise time percentage overshoot and peak time. Also find the steady state error when

$$(i)R(s) = \frac{9s^3}{(s-2)(s^2+1)}$$
 $H(s) = 1$

4. Attempt any one part of the following:

 $10 \times 1 = 10$

a. The open loop transfer function of a unity feedback system is given by $(i)G(s) = \frac{k}{s(sT+1)}$ where

k and T are positive. By what factor should the gain k the reduced so that peak overshoot of unit step response of the system is reduced from 75% to 25%.

b. Write the differential equations governing the Mechanical system shown in fig and determine the transfer function.

5. Attempt any one part of the following:

 $10 \times 1 = 10$

- a. Obtain state space model for the transfer functions given below:
- (i)Y(s)/U(s) = 1/(s+1)(s+2)(s+3) (cascade decomposition)
- (ii)Y(s)/U(s) = s2 + s + 2/s + 3 + 9s2 + 26s + 24 (direct decomposition)

b. Establish correlation between frequency domain response & time domain response. A unit step input is applied to a unity feedback control system having open loop Transfer Function G(S)H(S) = k/s

(1+sT). Determine the values of K and T to have peak overshoot =26% and resonant frequency =8 rad /sec. Also calculate the resonant peak.

6. Attempt any one part of the following:

 $10 \times 1 = 10$

a. Construct the Bode plot for unit feedback control system having G(s) = 2(s+0.25)/s2 (s+1) (s+0.5) From the plot obtain Gain Margin, Phase Margin, Gain crossover frequency and Phase crossover frequency. Also comments on stability of closed loop system.

b. A system is described by the following differential equation. Represent the system in the state space.

$$\frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = u_1(t) + 3u_2(t) + 4u_3(t)$$
 and outputs are

$$Y_1 = 4\frac{dx}{dt} + 3u_1, \quad Y_2 = \frac{d^2x}{dt_2} + 4u_2 + u_3$$

7. Attempt any one part of the following:

 $10 \times 1 = 10$

a. A linear time invariant system is characterized by the state variable model. Examine the controllability and observability of the system

$$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix}$$

$$B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix} ; C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$

b. Consider a unity feedback system with a forward path transfer function,

$$G(s) = \frac{k(s+4)}{(s+2)(s-1)}$$

Draw the root locus.