Printed Pages—4

EIC701

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 2750 Roll No.

B.Tech.

(SEM. VII) ODD SEMESTER THEORY EXAMINATION 2012-13

CONTROL SYSTEM—II

Time: 3 Hours

Total Marks: 100

Note: Attempt all questions.

1. Attempt any four parts:

 $(5 \times 4 = 20)$

- (a) What is the significance of sampling and holding operations? With the help of a simple R-C circuit, explain the principle of sample and hold.
- (b) Explain the acquisition time, aperture time and settling time with respect to a Sample and Hold circuit.
- (c) Explain the relationship between the Laplace and Z transforms. Does the two transforms become same when the sampling period approaches zero? Explain.
- (d) Find the z-transform of the following function. Also indicate its ROC:

$$x[n] = -a^n u [-n-1].$$

- (e) Find the z-transform of $x[n] = \sin n\theta$.
- (f) Explain the conditions of stability in the z-transform analysis.
- 2. Attempt any four parts:

 $(5 \times 4 = 20)$

(a) Explain the pulse transfer function and the z-transfer function. Use the impulse response method to derive the expression for the latter.

EIC701/DLT-44175

[Turn Over

- (b) What is zero order hold? Derive the transfer function of a ZOH in z-domain.
- (c) Find the characteristic equation in z-domain of a system having forward path transfer function $G(s) = \frac{10}{s(s+5)}$, H(s) = 1 and sampling period T = 0.1 second.
- (d) The transfer function of a discrete data system is given by $G(s) = \frac{1}{s+a}$ where 'a' is a constant. The input to the system is a unit step function $e(t) = u_s(t)$. Evaluate the output of the system using the modified z-transform method.
- (e) What is W-plane analysis? A digital control loop transfer function is given by $GH(z) = \frac{0.0952 \, kz}{(z-1)(z-0.905)}$. Find the GH(w) using w-transformation.
- (f) Write a brief essay on digital PID controllers.
- 3. Attempt any two parts:

 $(10 \times 2 = 20)$

(a) Define controllability and observability. What are complete state controllability and complete output controllability?

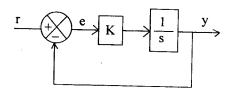
Check the controllability and observability of the coefficient matrices of the following digital control system:

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}, B = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, D = \begin{bmatrix} 1 & 2 \end{bmatrix}.$$

EIC701/DLT-44175

2

(b) What is Caley-Hamilton theorem? How can the state transition matrix be calculated using the Caley-Hamilton theorem?


Find the state transition matrix using the theorem for the

matrix
$$A = \begin{bmatrix} 3 & 2 \\ & \\ 2 & 3 \end{bmatrix}$$
.

- (c) What is Liapunov stability analysis? How does it get modified for systems with dead time?
- 4. Attempt any two parts:

 $(10 \times 2 = 20)$

(a) Write about the formulation of the optimal control problem. For the system shown below, find the value of K that minimizes the ISE (integral square error) for the unit step input:

- (b) What is an optimal state regulator? Derive its design using Ackermann's formula.
- (c) What is a digital state observer? How is it designed? The state equations of a digital process are described by

$$x(k + 1) = A x(k) + B u (k)$$

where
$$A = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

EIC701/DLT-44175

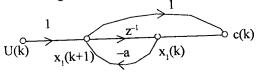
3

[Turn Over

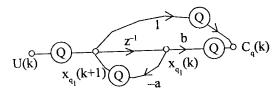
The output equation is C(k) = D x(k)

where $D = [2 \ 0]$

Design a digital observer which observes the states $x_1(k)$ and $x_2(k)$ from the output C(k).


5. Attempt any two parts:

 $(10 \times 2 = 20)$


- (a) Write an essay on mechanization of control algorithms using Microprocessors.
- (b) What is a Microcontroller? What is the difference between a Microprocessor and a Microcontroller? Which one of the two induces less quantization error and why?
- (c) Consider a first order digital controller with the transfer function:

$$D(z) = \frac{C(z)}{U(z)} = \frac{1 + bz^{-1}}{1 + az^{-1}}, \ a < 1$$

The state diagram of the controller is shown below:

The model with quantizers positioned at appropriate locations is shown below:

Find the magnitude of the error bound i.e. $\left| \lim_{N \to \infty} e_c(N) \right|$.

242

EIC701/DLT-44175