

EIT-071

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 113751

Roll No.

B. Tech.

(SEM. VII) (ODD SEM.) THEORY EXAMINATION, 2014-15
DISCRETE STRUCTURES

Time: 3 Hours]

[Total Marks: 100

Note: Attempt All questions.

1 Attempt any four parts:

 $(4 \times 5 = 20)$

- (i) Show that n³+2n is divisible by 3 using mathematical induction?
- (ii) Determine whether each of the following function are bijective or not:
 - a. F: R -> R, $f(x)=(x^2+1)/(x^2+2)$
 - b. F: R -> R, $f(x)=x^{5+1}$
- (iii) Let R be a Relation from set A to B and S be a relation from set B to C, then show that $(RoS)^{-1} = (S^{-1}oR^{-1})$
- (iv) Show that $R=\{(a, b)| a \equiv b \pmod{m}\}$ is an equivalent relation on Z. Show also if $x_1 \equiv y_1$ and $x_2 \equiv y_2$ then $(x_1+x_2) \equiv (y_1+y_2)$.

113751]

1

[Contd...

- (v) Let N={1,2,3...} and a relation is defined in N × N as follows: (a, b) is related to (c, d) iff ad = bc then show that whether R is a equivalence relation.
- (vi) Composition function is commutative. Prove the statement or give counter example.

2 Attempt any four parts:

 $(4 \times 5 = 20)$

- (i) If for each a and b in a group G, $(ab)^2 = a^2b^2$. Show that G is abelian.
- (ii) Define cyclic group with an example.
- (iii) Prove that $(Z_6, +_6)$ is an abelian group of order 6. Where $Z_6 = \{0,1,2,3,4,5\}$.
- (iv) State and prove Lagrange's theorem.
- (v) Consider $G = \{0,1,2,3,4,5,6,7,8,9\}$ under addition modulo 10. Find out order of each element of the group.
- (vi) Explain Field with an example.

3 Attempt any two parts:

 $(2\times10=20)$

- (i) Simplify the Boolean expression $f(w,x,y,z) = \sum m (0,2,4,5,8,14,15),$ $d(w,x,y,z) = \sum m(7,10,13)$
- (ii) Explain POSET and Lattice with an example.
- (iii) Draw the Hasse Diagram for the following set under partial ordering: ({1, 2, 3, 4, 9, 36}, /). Define Maximal, minimal, greatest and least element of POSET. Find these elements in the Hasse diagram. Is it a Lattice?

4 Attempt any two parts:

 $(2\times10=20)$

- (i) Check the validity of the following arguments using inference rules:
 - a. $(p \ \Lambda \ q) \rightarrow r$, $(r \rightarrow q)$, $(r \ \Lambda \ q) \rightarrow (q \ \Lambda \ r)$ $|- (p \ \Lambda \ q) \rightarrow (q \ \Lambda \ r)$
 - b. $\sim p \Lambda q, r \rightarrow p, \sim r \rightarrow s, s \rightarrow t \mid t$

.113751] .

2

[Contd...

- (ii) Prove the validity of the following argument using predicate calculus:

 "Every living thing is a human being or an animal.

 Mohan is alive and he is not an animal. All human being have hearts. Hence, Mohan has a heart"
- (iii) Show that $(P \oplus Q) \leftrightarrow ((P \land \neg Q) \lor (\neg P \land Q))$ is a tautology or contradiction or contingency?
- 5 Attempt any two parts:

 $(2\times10=20)$

- (i) Solve the given recurrence relation: $a_n - 4a_{n-1} + 3a_{n-2} = 3n^2 - 3n + 1$
- (ii) Explain Extended Pigeonhole Principle. What is the minimum number of students required in a class to be sure that atleast 5 will receive the same grade if there are four possible grades?
- (iii) Write a short note on the following:
 - a. Planar graph
 - b. Euler graph
 - c. Graph coloring.

113751]

3

4925