Printed Pages: 02	Sub Code: NME309/EME309
Paper Id: 140311	Roll No.

B. TECH. (SEM. III) THEORY EXAMINATION 2018-19 THERMAL & HYDRAULIC MACHINES

Time: 3 Hours [Total Marks: 100]

Note: Attempt all Sections. If require any missing data; then choose suitably.

Section- A

All parts carry equal marks. Write answer of each part in short. $(2 \times 10 = 20)$

- (a) Define quasi static process.
- (b) Distinguish Open system & closed System.
- (c) Define 'reheat factor'.
- (d) Differentiate between closed cycle and open cycle gas turbine?
- (e) What is scavenging in 2 stroke engines?
- (f) Differentiate between Four stroke engine and two stroke engines.
- (g) Define velocity of the flow and velocity of whirl and explain their significance.
- (h) On what factors does the no. of jets depend in case of Pelton wheel?
- (i) What are the effects of Cavitation in turbine?
- (i) Give the differences between centrifugal and reciprocating pump?

Section-B

Note: Attempt any five questions from this section.

 $(10 \times 5 = 50)$

- 2. (i) A cyclic heat engine operates between a source temperature of 800° C and a sink temperature of 30° C. what is the least rate of heat rejection per kW net output of the engine?
 - (ii) What are the causes of irreversibility of a process?
- 3. What is quality of steam and what are the different methods of measurement of quality?
- 4. Atmosphere air of 1 Kg at 1 bar & 45° C is compressed isothermally to 15 bar & then it is expanded back adiabatically without friction to its initial pressure. Determine its final temperature, net work done and the net heat transfer with its surroundings. Assume Y=1.4, R= 287 Nm/KgK & Cv = 717.5 Nm/KgK
- 5. Derive the expression for the efficiency and mean effective pressure of a Diesel cycle.
- **6.** Define the following terms:
 - (i) Casing and Draft tube in reaction tube.
 - (ii) Priming and Cavitation in pump.

- 7. Explain the indicator diagram of a reciprocating pump. Show the effect of acceleration of piston on the indicator diagram.
- **8.** A Pelton wheel is to be designed for the following specifications: Shaft power = 11,772 kW; Head = 380 m; Speed = 750 r.p.m.; Overall efficiency = 86%; Jet diameter is not to exceed one-sixth of the wheel diameter. Determine:
 - (i) Wheel diameter(ii) the number of jets required, and (iii) Diameter of the jet. Take $Kv_1 = 0.985$ and $Ku_1 = 0.45$
- **9.** Explain the methods of steam turbine governing and control.

Section- C

Note: Attempt any two questions from this section.

 $(15 \times 2 = 30)$

- 10. Describe Zeroth, 1st& 2nd laws of thermodynamics as well as Enthalpy & Entropy.
- 11. A centrifugal pump having outer diameter equal to two times the inner diameter and running at 1000 r.p.m. works against a total head of 40 m. the velocity of flow through the impeller is constant and equal to 2.5 m/s. the vanes are set at an angle of 40⁰ at outlet. If the outer diameter of the impeller is 500 mm and width at outlet is 50mm, determine:
 - (i) Vane angle at inlet
 - (ii) Work done by impeller on water per second
- 12. Explain air standard Otto cycle, Diesel cycle and Brayton cycle with diagram.