Printed Pages - 04

ME - 605

B. Tech.

SIXTH SEMESTER EXAMINATION, 2004-2005

AUTOMATIC CONTROL

Time: 2 Hours

Total Marks: 50

Note:

- (i) Attempt ALL questions.
- (ii) In case of numerical problems assume data wherever not provided.
- 1. Attempt any four parts of the following: (3.5x4=14)
 - (a) Describe the components and variables of the biological control apparatus involved in walking in a prescribed direction. Why is walking a closed-loop operation?
 - (b) What do you understand by servomechanism? Explain with the help of a suitable example.
 - (c) Simplify the given block diagram.

(d) Determine the expression for the time function f(t) from the s-domain function

$$F(s) = \frac{s^2 + 2s + 2}{(s+1)(s+2)}.$$

ME - 605

1

[Turn Over

001292

- (e) What are different rotational mechanical components? What are analogous systems? Explain with one suitable example.
- (f) For the RC network given below, let the initial voltage across the capacitor C be. $V_{co} = 1$ volts with the polarity shown and let $x = 2e^{-t}$. Using the Laplace transform techniques, find y.

- 2. Attempt *any four* parts of the following : (3x4=12)
 - (a) Draw a typical step-response of a second order system and with the help of this plot explain the following terms:
 - (i) Swiftness
 - (ii) Settling lime
 - (iii) Maximum overshoot
 - (b) The block diagram representation of a control system is given below:
 - (i) Determine whether this system is an overdamped, a critically damped or an underdamped system.

(ii) Determine the natural frequency, damping ratio and damped natural frequency.

(c) Transfer function of a second-order system is given by $\frac{C(s)}{R(s)} = \frac{25}{s^2 + 10s + 25}$. Determine its

time-domain response, c(t), to a unit step.

- (d) What is two-position control? Explain with any suitable example.
- (e) Explain the following terms:
 - (i) Derivative time
 - (ii) Tuning the controller
 - (iii) Proportional band of a controller
- (f) What is a PID controller? How can it be implemented for a mechanical actuator?
- 3. Attempt *any two* parts of the following: (6x2=12)
 - (a) How many roots does the following polynomial have in the right half of the s-plane? $s^5 + 2s^4 + 3s^3 + 6s^2 + 10s + 15$
 - (b) What is the difference between transient and steady state response of a control system? What is steady-state error of any closed-loop system?

- (c) With a neat sketch, discuss the generation of proportional as well as integral action in a proportional plus integral hydraulic actuator.
- 4. Attempt *any two* parts of the following: (6x2=12)
 - (a) For the open-loop transfer function given below, calculate :
 - (i) break-away point
 - (ii) intersection with imaginary axis, using root locus technique

G(s) H(s) =
$$\frac{K}{s(s+4)(s+5)}$$
.

(b) Obtain the polar plot of the following transfer

function G (jw) =
$$\frac{e^{-jwL}}{1+jwT}$$
.

(c) What are gain margin and phase margin? How, using these margins, stable or unstable system can be identified from a Bode magnitude and phase-angle plot.