

Printed Pages: 4

ME - 605

B. Tech.

(SEM. VI) EXAMINATION, 2007

AUTOMATIC CONTROLS

Time: 2 Hours]

[Total Marks: 50

Note: Attempts all questions.

- 1 Attempt any four of the followings: 3.5×4
 - (a) List out merits and demerits of open loop control systems.
 - (b) Draw a schematic diagram of a PID controller and also draw a graph showing the output of the PID controller for a unit ramp input.
 - (c) Find the inverse Laplace transform of

$$F(s) = \frac{s+3}{(s+1)(s+2)}$$

(d) Determine the transfer function of the R-C network shown below (where V, is the input voltage):

(e) Simplify the block diagram:-

Fig. 2

(f) Find the transfer function, between the input (x_1) at point 'P' and output (x_0) of the position of the mass, of the given mechanical system.

Fig. 3

2 Attempt any four of the following:

- 3×4
- (a) Determine the unit-ramp response of the first-order system shown below:-

Fig. 4

V-4053]

2

[Contd..

(b) Determine the values of 'K' and 'k' of the closed-loop system shown below, so that the maximum overshoot in unit-step response is 25% and the peak time in 2 sec. Assume that J=1 Kg- m^2 .

Fig. 5

- Briefly discuss about the step response of a (c) second - order system for the three different cases: under damped (0 $<\xi$ <1), critically damped ($\xi = 1$) and over damped ($\xi > 1$).
- (d) Draw a block diagram of an industrial control system, which consists of an automatic controller, an actuator, a plant (consisting of physical objects like a mechanical device etc.) and a sensor (measuring element). Briefly explain the functions of each element of the block diagram.
- (e) A proportional-plus-derivative controller is used to control a system consisting of an inertial load as shown in the figure below. Find the steady state error for a unit-ramp

V-40531

- (f) Briefly discuss the effects of integral and derivative control actions on system performance.
- 3 Attempt any two of the following:

6×2

(a) The characteristic equation of a given system is:

$$s^4 + 6 s^3 + 11 s^2 + 65 + K = 0$$

Using the Routh stability criterion, determine the range of 'K' for which the system will be stable.

- (b) Discuss the functioning of a hydraulic proportional controller.
- (c) Draw a neat sketch and explain the basic principle for obtaining a pneumatic proportionalplus-derivative controller.
- 4 Attempt any two of the following:

6×2

(a) For the control system given by

$$G(s) = k(s+2) / (s^2 + 2s + 3)$$
 and $H(s)=1$

Find the following:

- (i) The root loci on the real axis
- (ii) The angle of departure
- (iii) The break in point
- (b) Draw the Bode diagram of the following transfer function (L=0.5 and T=1)

$$G(j\omega) = \frac{e^{-j\omega L}}{1 + j\omega T}$$

(c) Sketch a polar plot of the second-order transfer function given by:

$$G(s) = \frac{1}{s(Ts+1)}$$