Printed Pages: 6	356		NMCA-115
(Following Paper ID and Roll No. to be filled in your Answer Book)			
Paper ID : 214105	Roll No.		G速

MCA
(SEM. I) THEORY EXAMINATION, 2015-16 DISGITAL LOGIC DESIGN
[Time:3 hours]
[Total Marks:100]
Note : Attempt questions from all Sections as per directions.
Section-A

1. Attempt all parts. Write answer of each part in brief.

$$
(10 \times 2=20)
$$

(a) The solutions to the quadratic equation $x^{2}-11 x+22=0$ are $x=3$ and $x=6$. What is the base of the numbers.
(b) List all the minterms for three varible x, y, and z ?
(c) Define multiplexer? Draw a logic diagram of 4×1 multiplexer.
(d) Write the truth- table of an octal-to binary priority encoder.
(e) Explain the race condition in the context of SR flip-flop?
(f) Show that the characteristic equation for the complement output of JK flip-flop is $Q^{\prime}(T+1)=J^{\prime} Q^{\prime}+K Q$.
(g) Explain the difference between EPROM and EEPROM.
(h) How many address line and input-output data lines are required for memory unit $8 \mathrm{~K} \times 8$?
(i) Discuss how ASM chart differs from conventional flow chart?
(j) Define critical race and non-critical race.

Section-B

Attempt any five questions from this section. $\quad(10 x 5=50)$
2. (a) Perform the following conversions as directed:
(i) $(64 \mathrm{CD})_{16} \rightarrow(?)_{8}$
(ii) (DADA.B) ${ }_{16} \rightarrow(?)_{10}$
(iii) $(10110.0101)_{2} \rightarrow(?)_{10}$
(iv) $(268.75)_{16} \rightarrow(?)_{8} \cdot$
(v) (867) ${ }_{16} \rightarrow(?)_{B C D}$
(b) Do as directed:
(i) Represent(-89) ${ }_{10}$ in 2 's complement representation using 8-bits.
(ii) Find the decimal equivalent of binary (10111011). Assume the given number in 1's complement representation.
3. (a) Simplify the Boolean function f together with don't care condition din SOP and POS:
$\mathrm{f}(\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z})=\sum(0,1,2,3,7,8,9,10)$
$d(w, x, y, z)=\Sigma(5,6,11,15)$
(b) Define binary adder. Draw the logic circuit of a 4-bitbinary adder-subtractor and explain its working.
4. A majority circuit is a combinational circuit whose output is equal to 1 if the input variables have more 1 's than 0 's. The output is 0 otherwise. Design a 3 - input majority circuit by finding the circuit's truth-table, Boolean equation, 1 and a logic diagram.
5. list the capabilities of general shift register? Draw the logic circuit of "4-bit bidirectional shift register with parallel load" and explain its working?
P.T.O.
6. Design a 2 bit cout-down couter. When inptu $x=0$, the state of the flip-flop does not change. When $x=1$, the state sequences is $11,10,01,00,11$ and repeat. Draw the state diagram.

7, (a) Draw a PLA circuit to implement the functions

$$
\begin{aligned}
& F_{1}=A^{\prime} B+A C^{\prime}+A^{\prime} B C^{\prime} \\
& F_{2}=(A B+A C+B C)^{\prime}
\end{aligned}
$$

(b) Expalin decision box and conditional box used in ASM chart.
8. (a) Derive the ROM programming table for the combinational circuit that squares a 4-bit number. Minimize the number of product terms.
9. (a) Draw the logic configuration of four inputs and four outputs PAL and expalin it.
(b) Discuss different types of hazards in combinational and sequential circuits.

Section-C

Attempt any two questions from this section. $\quad(15 \times 2=30)$
10. (a) Find all the prime implicants for the following boolean functions, and determine which are the essential prime implicants.
$f(w, x, y, z)=\sum(0,2,4,5,6,7,8,10,13,15)$
(b) Implement full- subtrator circuit using multiplexer of suitbale size.
(c) Design a Binary multiplier circuit that multiplies two binary numbers, where first number is of 4-bits and second number is of 3 bits. Use AND gates and binary address.
11. (a) A PN flip-flop has four operation: clear to 0 , no change, complement, and set to 1 , when inputs P and N are $00,01,10$ and 11 , respectively. $\quad(2 \times 4)$
(i) Tabulate the characteristic table.
(ii) Derive the characteristic equation.
(iii) Tabulate the excitation table.
(iv) Show how the PN kflip-flop can be converted to a Dflip-flop.
(b) The following is a truth table of a three-input, fouroutput combinational circuit:

Inputs		
x	y	z
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

Outputs			
A	B	C	D
0	1	0	0
1	1	1	1
1	0	1	1
0	1	0	1
1	1	1	0
0	0	0	1
1	0	1	0
0	1	1	1

(5)
P.T.O.

Tabulate the PAL programming table for the circuit, and mark the fuse map in a PAL diagram.
12. (a) Draw the block digram of asynchronous sequenntial circuit and expalin its working. (5)
(b) An asynchronous sequential circuit has two internal states and one output. The excitation functions and output function of the circuit are as follows:
$Y_{1}=a^{\prime} b+b x$
$Y_{2}=a y+x$
Output function
$Z=a+y$
(i) Derive the logic diagram of the circuit. (5)
(ii) Derive the transition table and output map.
(5)
-x-

