Printed Pages: 4

NMCA-114

(Following Paper ID and R PAPER ID: 2141		filled in	your	Answer	Book)
Roll No.					

M.C.A.

(SEM. I) (ODD SEM.) THEORY EXAMINATION, 2014-15
DISCRETE MATHEMATICS

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions.

- 1 Attempt any four of the following: $5\times4=20$
 - (a) Show that relation "xRy iff (x-y) is divisible by 5" is an equivalence relation on the set of integers.
 - (b) In a class of 120 students, 80 students study mathematics, 45 study history and 30 students study both the subjects. Find the number of students who study neither mathematics nor history.

214120]

1

| Contd...

- (c) Given $R = \{(1,1),(2,2),(2,3),(3,3),(3,4),(4,3),(3,1)\} \text{ for }$ $A = \{1,2,3,4\} \text{ make its relation matrix } M_R \text{ and }$ check whether it is symmetric, reflexive or transitive.
- (d) If $A = \{1,3,4\}, B = \{2,3,4\}, C = \{1,2,3\}$ then find $(A \times B) (A \times C)$ and $(B \times C) \cap (B \times A)$.
- (e) Let P and Q be two sets. If $P \to Q$ is one-one onto, then prove that $f^{-1}: Q \to P$ is also one-one onto.
- 2 Attempt any four of the following: $5\times4=20$
 - (a) Show that $G = \{0,1,2,3,4\}$ is a cyclic group under addition modulo 5.
 - (b) Find product of two permutations

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 1 & 2 & 3 \end{pmatrix} \text{ and } \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 1 & 4 & 3 & 6 & 5 \end{pmatrix}$$

check whether it is odd or even.

- (c) Show that in a group identity element is unique.
- (d) Prove that quotient group of an abelian group is abelian.
- (e) Show that Kernel is a normal subgroup in group isomorphism.

214120]

2

Contd...

- 3 Attempt any two of the following: $10 \times 2 = 20$
 - (a) Express the expression xy'+xz+xy in CN as well as DN form.
 - (b) Draw the Hasse diagram of $(P(S),\subseteq)$ where $S = \{\alpha, \beta, \gamma\}$, and show that it is a lattice.
 - (c) For every element a and b in a Boolean algebra show that (i) (a.b)' = a' + b'(ii) $(a + b)' = a' \cdot b'$.
 - (d) From the input/output table given below form a corresponding Boolean expression and make it's simplified circuit.

Input x ₁	Input x ₂	Output $f(x_1, x_2)$
1	1	1
1	0	1
0	1	0
0	0	1

- 4 Attempt any two of the following: $10 \times 2 = 20$
 - (a) Show that $(p \Rightarrow (q \land r)) \Rightarrow (\neg r \Rightarrow \neg p)$ is a tautology. Using truth table and without truth table.
 - (b) Test the validity of the following argument "If I enjoy studying, then I will study. I will do my homework or I will not study. I will not do my homework. Therefore, I do not enjoy studying."
 - (c) Show that $(p \Rightarrow q) \land (r \Rightarrow q) \equiv (p \lor r) \Rightarrow q$.

- 5 Attempt any two of the following: $10 \times 2 = 20$
 - (a) Solve the recurrence relation T(1) = 1, T(n) = 3T(n/3) + n.
 - (b) (i) In a shipment there are 40 floppy disks of which 5 are defective. Determine in how many ways we can select (i) five non-defective floppy disks (ii) five floppy disks in which exactly three are defective.
 - (ii) Show that every complete bipartite graph is two colorable.
 - (c) Write notes on the following:
 - (1) Generating function
 - (2) Planar graph.