

				Printed Page: 1 of 2						
				Sub	ject	Cod	le: F	RCA	103	,
Roll No:										

MCA (SEM. I) THEORY EXAMINATION 2020-21 DISCRETE MATHEMATICS

Time: 3 Hours Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt *all* questions in brief.

 $2 \times 7 = 14$

á	a.	State the Commutative and Distributive Laws of Set theory.						
1	b.	Define the Equivalence Relation.						
(c.	Define the following terms (any two) with example:						
		i) DNF, ii) CNF, iii) Universal Gates						
(d.	State the Idempotent, Involution laws of Boolean Algebra.						
(e.	State the Modus Ponens and Hypothetical Syllogism Inference Rules.						
1	f.	What do you mean by Bound and Free variable with example?						
,	g.	State Generating Function.						

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

a.	Show that relation "xRy iff (x-y) is divisible by 3" is an equivalence relation
	on the set of integers.
b.	Let $S = \{x, y, z\}$ and $P(S)$ be its power set. Show that $(P(S), \subseteq)$ is a Lattice.
c.	State and Prove the Associative Laws of Boolean Algebra.
d.	If $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$ Determine the truth value of each of the following statement: i) $(\forall x \in A)x + 4 < 15$ ii) $(\exists x \in A)x + 4 = 10$ iii) $(\forall x \in A)x + 4 \leq 10$
e.	An examination paper containing 12 questions consists of two parts, A and B, part A contains 7 questions and part B contains 5 questions. A candidate is required to attempt 8 questions, selecting at least 3 from each part. In how many ways the candidate selects the questions?

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	For any set A and B, Prove that : $P(A \cap B) = P(A) \cap P(B)$.
(b)	Define the function. And also explain the various types of functions.

				Printed Page: 2 of 2						
				Subject Code: RCA103						
Roll No:										

4.	Attempt any	one	nart of	the	following
т.	Attempt any	UILC	part or	unc	10110 111112

7	X	1	=	7

(a)	Define Dual Lattice. And Show that Dual of a lattice is a lattice.
(b)	If $D = \{1, 2, 4, 8, 16, 32, 64\}$ be ordered by the relation "a divides b".
	Then show that D is a Poset. Also draw the Hasse diagram.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Draw Karnaugh map (K-map) and simplify the following Boolean expression:
	$f(a,b,c,d) = \sum_{i=0}^{\infty} (0.2,6,8,10,12,14,15).$
(b)	Show that $A \oplus B = ((A.B')'.(A'.B)')'$ and hence design a logic circuit of
	XOR gate using NAND only.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Show that: $(p \rightarrow q) \land (r \rightarrow q) \equiv (p \lor r) \rightarrow q$.
(b)	Construct the truth table: $((p \Rightarrow q) \lor (q \Rightarrow p)) \Leftrightarrow p$
	Is the preposition: Tautology, Contradiction or Contingency?

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a)	Solve the following recurrence relation:
	$a_n - 7a_{n-1} + 10a_{n-2} = 0$ with initial conditions $q_0 = 0$ and $q = 3$
(b)	Explain the difference between Permutation and Combination. And solve:
	Everybody in a room shakes hands with everybody else. The total number of
	handshakes is 66. Find how many people are there in the room?