(Following Paper ID and Roll No. to be filled in your Answer Book) PAPDR ID : 1151 Roll No.	13	0	3	2	1	4	0	0	1

MCA
(SEM. I) ODD SEMESTER THEORY
EXAMINATION 2013-14
MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

Time : 3 Hours
Total Marks : 100
Note :- Attempt all questions from each Part as indicated.
PART-A

1. Attempt all questions. Each part carries 2 marks: $(\mathbf{2} \times \mathbf{1 0}=\mathbf{2 0})$
(a) If $f: R \rightarrow R$, and $g: R \rightarrow R$, defined as $f(x)=x^{2}, g(x)=\sin$ x, find $f \circ g$ and g of.
(b) Let $A=\{\phi, b\}$. Construct the following sets:
(i) $\mathrm{A} \cap \mathrm{P}(\mathrm{A})$
(ii) $\mathrm{A} \cup \mathrm{P}(\mathrm{A})$

Where $P(A)$ represents the power set of A.
(c) Check whether or not $*$ forms a semi-group, where, $*$ for a and b is defined as

$$
\mathrm{a} * \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab} \text {, where, } \mathrm{a}, \mathrm{~b} \in \mathrm{R}-\{1\} \text {. }
$$

(d) Define universal and existential quantifiers with examples.
(e) What do you mean by bipartite graph? Explain with example.
(f) Differentiate between Hamiltonian circuit and Hamiltonian path.
(g) State pumping Lemma for regular language.
(h) When a grammar is said to be ambigious?
(i) Explain \in-closure with suitable example.
(j) State and explain Halting problem in Turing machine.

- PART-B

2. Attempt any three parts. Each part carries 10 marks :
($10 \times 3=30$)
(a) Find the discrete numeric function corresponding to the generating function given by :

$$
A(z)=\frac{1}{(1-2 z)(1+3 z)}
$$

(b) If R is an additive group of real numbers and R_{+}is the multiplicative group of positive real numbers, then prove that the mapping $f: R \rightarrow R_{+}$defined by $f(x)=e^{x}, \forall x \in R$ is an isomorphism of R.
(c) ,Make a Binary Search Tree (BST) for the following sequence of numbers :

$$
76,45,36,23,89,115,98,39,41,56,69,48
$$

Traverse the tree in preorder, inorder and postorder.
(d) Minimize the given DFA:

(e) What do you mean by Non-deterministic PDA ? Construct a PDA for accepting the language ww^{R} over input $\Sigma=\{\mathrm{a}, \mathrm{b}\}$. Also show the moves for input string 'abbaabba'.

PART-C

Note :- Attempt all questions of this Part. Each question carries 10 marks.
3. Attempt any two parts:
$(5 \times 2=10)$
(a) - Let $A=\{\alpha, \beta\}, B=\{1,2,3\}$ then find $A \times B, B \times A$ also $|(B \times A) \cap(A \times B)|$
(b) Determine which of the following represents a partition of the set of natural numbers :
(i) $[\{x: x>5\},\{x: x<5\}]$
(ii) $[\{1,2,7\},\{3,5\},\{4,6,8,9\},\{2,3,5\}]$
(iii) $[\{x: x>5\},\{0\},\{1,2,3,4,5\}]$
(iv) $\left[\left\{x: x^{2}>11\right\},\left\{x: x^{2}<11\right\}\right]$
(c) In MCA class of a college 42 students got distinction in Accounts, 60 got distinction in MFCS and 27 students in both subjects. Use Venn diagram to find out number of students got distinction :
(i) In Accounts only
(ii) In MFCs only
(iii) In Accounts or in MFCs or in both.
4. Attempt any two parts:
$(5 \times 2=10)$
(a) Check whether or $\operatorname{not}(\{\mathrm{P}(\mathrm{S})\}, \cup)$ forms a group, where $P(S)$ is the power set of a set and \cup is the union between the elements of $\mathrm{P}(\mathrm{S})$.
(b) Draw Hasse diagram of D_{100}. Where D_{100} represents the set of Divisors of 100 . Also find greatest lower bound of $\{10,20\}$ and least upper bound (if exists).
(c) Using truth table determine validity of the following argument:

$$
\mathrm{p} \rightarrow \mathrm{q} ; \sim \mathrm{p} \vdash \sim \mathrm{q} .
$$

5. Attempt any two parts :
(a) State and prove five colour theorem.
(b) Define an Eulerian and Hamiltonian graph. Give examples of eulerian Non-Hamiltan graph G_{1} and Hamiltan Non-Eulerian graph G_{2} with number of vertices ≥ 10.
(c) For a planar graph with ' n ' vertices and 'e' edges, prove
that $e \leq 3 n-6$.
6. Attempt any two parts :
(a) Using Arden's Theorem, construct a regular expression for the given diagram :

(b) Design a mealy machine that accepts a binary number and produces 2 's complement of input bit pattern.
(c) Construct a DFA for binary strings over the input $\Sigma=\{0,1\}$, such that string must be divisible by 3 .
,7. Attempt any two parts:
(a) Enumerate different types of grammar under Chomsky Hierarchy with suitable example.
(b) Construct a Turing machine ' M ' for $\Sigma=\{a, b\}$, which converts lower case letters into upper case.
(c) Sonstruct a grammar for the following language:

$$
L=\left\{a^{n} b^{m} c^{n} d^{2 n}: n \geq 0, m \geq 0\right\}
$$

