| (Following Paper ID and Rol | ll No. to be filled in your Answer Book) | _ |
|-----------------------------|------------------------------------------|---|
| PAPER ID: 9615              | Roll No.                                 | _ |

|       |       |                                                                                                      |        |         |          |                       | N.      | I.C.   | A.     |          |       |        |                |       |        |        |           |   |
|-------|-------|------------------------------------------------------------------------------------------------------|--------|---------|----------|-----------------------|---------|--------|--------|----------|-------|--------|----------------|-------|--------|--------|-----------|---|
|       |       |                                                                                                      | (SEM   | П) Е    | VEN SI   | EMEST                 | ER TE   | IEO]   | RY E   | KAMI     | NA    | TION   | , 20           | 09-20 | 010    |        |           |   |
|       |       | CON                                                                                                  | MPUT   | TER B   | ASED     | NUM                   | IERIC   | AL     | & S7   | ATIS     | STIC  | CAL    | TEC            | HN    | IQU    | ES     |           |   |
| Time: | : 3 F | lours                                                                                                | 7      |         |          |                       |         |        |        |          |       |        |                |       | Totai  | Mar    | rks : 100 | ) |
| Note  | ; (   |                                                                                                      | ,      | ,       |          | ee sectio<br>les 50 N |         | ectio  | n-A c  | arries . | 20 A  | larks, | Seci           | ion-  | B car  | ries 3 | 0 Mark    | S |
|       | (     | ii)                                                                                                  | Atten  | ipt all | questio  | ns. Ma                | rks are | indi   | cated  | agains   | st ea | ch que | st <b>i</b> or | is/pa | irts.  |        |           |   |
|       | (     | iii)                                                                                                 | Make   | suitabl | le assun | iptions,              | if requ | tired. |        |          |       |        |                |       |        |        |           |   |
|       |       |                                                                                                      |        |         |          |                       | SEC     | TIO    | N-A    |          |       |        |                |       |        |        |           |   |
| i     | You   | ı are                                                                                                | requi: | red to  | answei   | all the               | parts   | of th  | nis qu | estior   | 1:    |        |                |       |        | (1)    | 0x2=20    | ) |
|       |       |                                                                                                      | -      |         |          | for par               | •       |        |        |          |       |        |                |       |        |        |           | , |
|       | (a)   |                                                                                                      |        |         |          |                       |         |        |        | _        |       |        |                |       |        |        |           |   |
|       |       | (i)                                                                                                  | O      | verflov | V        |                       | (       | (ii)   | Und    | erflov   | ٧r    |        |                |       |        |        |           |   |
|       |       | (iii                                                                                                 | i) No  | ormali: | zation   |                       | (       | (iv)   | Non    | e of tl  | he al | ove    |                |       |        |        |           |   |
|       | (b)   | Th                                                                                                   |        | er of c | on/erg   | ence of               | False   | Posi   | ition  | metho    | d to  | find   | a ro           | ot o  | f a ec | quatio | ön        |   |
|       |       | (i)                                                                                                  | 1.4    | 1       | (ii)     | 2.1                   |         |        | (iii)  | 1.62     |       | (iv    | 1              |       |        |        |           |   |
|       | (c)   | If at any time during pivotal consi-<br>for m = k + 1 to n, are less than a pre-<br>are said to be : |        |         |          |                       |         |        |        |          |       |        |                |       |        |        |           |   |
|       |       | (i)                                                                                                  | W      | ell con | ditione  | d set of              | f equat | ions   |        |          |       |        |                |       |        |        |           |   |
|       |       | (ii)                                                                                                 | ) III  | condit  | ioned s  | set of e              | quation | ns     |        |          |       |        |                |       |        |        | •         |   |
|       |       | (iii                                                                                                 | i) No  | one of  | the abo  | ve                    |         |        |        |          |       |        |                |       |        |        |           |   |

| (d) | One | of the method to solve the system of linear equations is : |
|-----|-----|------------------------------------------------------------|
| •   | (i) | Bisection Method.                                          |

- (ii) Gaussian quadrature formula.
- (iii) Simpson's Rule.
- (iv) None of the above.

State True or False for the parts (e) to (g)

- (e) Gauss elimination method is useful for solving ill conditioned set of linear equations.
- (f) Simpson's rule with n points gives about as much accuracy as Trapezoidal rule with 2n points.
- (g) The determination of value f(y) at a point y inside the interval  $[X_1, X_n]$  is called extrapolation.

Fill in the Blanks for parts (h) to (j):

- (h) The relative error involved in rounding and truncating 4.9997 to 5.000 are \_\_\_\_\_ and \_\_\_\_\_.
- (i) Gaussian quadrature formulae used for solving \_\_\_\_\_.
- (j) An unstable algorithms is \_\_\_\_\_

## SECTION-B

2. Attempt any three parts of the following:

(3x10=30)

(a) Discuss the various steps of Newton-Raphson method to find root of equation. For what starting values will Newton's method converge if the function is :

$$f(x) = x^2 / (1 + x^2)$$

(b) Solve the following set of equation by Gauss-Seidel iterative method:

$$3x_1 + 2x_2 - x_3 = 7$$

$$5x_1 - 3x_2 + 2x_3 = 4$$

$$-x_1 + x_2 - 3x_3 = -1$$

(c) Find the order of the polynomial which might be suitable for the following function:

x 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 f(x) 0.577 0.568 0.556 0.540 0.520 0.497 0.471 0.442

Also find the value of f(2.15) using difference formulae.

- (d) Describe Simpson's rule for integration. Also write a function in C to find the integration using Simpson's Rule.
- (e) Write short notes on the following:
  - Forecasting models and methods.
  - (ii) F-Test and t-test.

## SECTION-C

3. Attempt any two parts of the following: (2x5=10)

- Show with suitable examples that associative and the distributive laws of arithmetic are not always valid when floating point representation of numbers is used.
- Write an algorithm and a program in C for finding the summation of the following (b)

- $S = x x^3/3! + x^5/5! x^7/7! + ... + (-1)^{n-1} x^{(2n-1)}/(2n-1)!$ Prove that the order of convergence of Secant method for finding the roots of equation is 1.62 (c) equation is 1.62.
- 4. Attempt any two parts of the following:

(2x5=10)

Find the root of the following equation in the interval [0, 1] by Regula falsi method:

 $2x(1-x^2+x)$  In  $x=x^2-1$ .

(b) Solve the following equations by Gauss elimination method:

$$3x_1 + 2x_2 - 5x_3 = 0$$

$$2x_1 - 3x_2 + x_3 = 0$$

$$x_1 + 4x_2 - x_3 = 4$$

The answer should be correct to 3 significant digits.

- What do you mean by interpolation? When a function is tabulated at equal (c) intervals, obtain a more concise Lagrange interpolation formula.
- 5. Attempt any two parts of following:



(2x5=10)

- Find an approximate value of  $\int_{1}^{2} x^{-1} dx$  using composite Simpson's Rule with (a) h = 0.25. Give a bound on the error.
- Describe Eular's Method for solving the differential equations. (b)
- What straight line best fits the following data: (c)

in the least square sense.



| 6. | Attempt | any | two | parts | of | the | following | : |
|----|---------|-----|-----|-------|----|-----|-----------|---|
|----|---------|-----|-----|-------|----|-----|-----------|---|

(2x5=10)

- (a) Give the application of cubic spline. Determine the natural cubic spline that interpolates the functions  $f(x) = x^6$  over the interval [0, 2] using nodes 0, 1, and 2.
- (b) The velocity V of a liquid is known to vary with temperature T, according to a quadratic law  $V = a + bT + cT^2$ . Find the best values of a, b, and c for the following table:

T 1 2 3 4 5 6 7 V 2.31 2.01 1.80 1.66 1.55 1.47 1.41

(c) Write short note on the fourth order Runge-Kutta method for solving the ordinary differential equation.

7. Write short notes on any four of the following:

(4x2.5=10)

- (a) Moving averages.
- (db) Multiple regressions.
- (c) Representation of floating point numbers.
- (d) Frequency charts.
- (e) Statistical quality control methods.
- (f) Hermite's interpolation.

- o O o -