#### **MCA**

# THEORY EXAMINATION (SEM–II) 2016-17 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time: 3 Hours Max. Marks: 70

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

#### **SECTION-A**

### 1. Attempt all questions:

7 x2 = 14

a) Explain Pitfalls of floating-point Representation in detail.

b) Prove that 
$$\Delta = \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{\delta^2}{4}}$$

- c) Suppose 1.414 is used as an approximation to  $\sqrt{2}$ . Find the absolute and relative errors.
- d) Write down Gauss's forward interpolation formula.
- e) Prove that  $x^4 = \frac{1}{8} [3T_0(x) + 4T_2(x) + T_4(x)]$
- f) What do you mean by Histograms?
- g) Explain Null hypothesis.

#### **SECTION-B**

# 2. Attempt any five of the following:

7 x5 = 35

- a) Find a real root of the equation  $3x + sinx e^x = 0$  by the method of Regula falsi position correct to four decimal places.
- b) Find the missing term in the following table:

| х | 2     | 2.1 | 2.2   | 2.3   | 2.4 | 2.5   | 2.6   |
|---|-------|-----|-------|-------|-----|-------|-------|
| у | 0.135 |     | 0.111 | 0.100 |     | 0.082 | 0.074 |

- c) Given  $y_{20} = 24$ ,  $y_{24} = 32$ ,  $y_{28} = 35$  and  $y_{32} = 40$  find  $y_{25}$  by Bessel's interpolation formula.
- d) Given  $\frac{dy}{dx} = y x$ , y(0) = 2. Find y(0.1) and y(0.2) correct to four decimal places using Runge-Kutta method.
- e) By the method of least squares, find the curve  $y = ax + bx^2$  that best fits the following data:

| Х | 1   | 2   | 3   | 4    | 5    |
|---|-----|-----|-----|------|------|
| у | 1.8 | 5.1 | 8.9 | 14.1 | 19.8 |

f) Apply Gauss-Seidel iteration method to solve the following equation (three iteration only)

$$20x + y - 2z = 17$$

$$3x + 20y - z = -18$$

$$2x - 3y + 20z = 25$$

g) Find the cubic Lagrange's interpolating polynomial from the following data:

|      | 0 0 | 1 0 | , 1 |     |
|------|-----|-----|-----|-----|
| х    | 0   | 1   | 2   | 5   |
| f(x) | 2   | 3   | 12  | 147 |

h) For 10 observations on price(x) and supply(y), the following data were obtained (in appropriate units):

 $\sum x = 130, \qquad \sum y = 220, \qquad \sum x^2 = 2288, \qquad \sum y^2 = 5506 \quad and \quad \sum xy = 3467$ Obtain the two lines of regression.

#### **SECTION-C**

## Attempt any two of the following:

10.5 x2 = 21

- 3. Find y(2) if y(x) is the solution of  $\frac{dy}{dx} = \frac{1}{2}(x+y)$  where y(0) = 2, y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968 using Milne's method.
- 4. Given that  $\frac{dy}{dx} = log_{10}(x + y)$  with the initial condition that y = 1 when x = 0, find y for x = 0.2 and x = 0.5 using Euler's modified formula.
- 5. Derive the Newton-divided difference formula, calculate the value of f(6) from the following data

| x    | 1 | 2 | 7 | 8 |
|------|---|---|---|---|
| f(x) | 1 | 5 | 5 | 4 |