Printed Pages: 02 Sub Code: RAS207

Paper Id: 294227 Roll No.

MCA (INTEGRATED) (SEM. II) THEORY EXAMINATION 2018-19 DISCRETE MATHEMATICS FOR MCA

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. Define Domain and Range of a function.
- b. Define the Power set. If $A = \{x, y, z\}$ find P(A) and $n\{P(A)\}$.
- c. State the De-Morgan's Law of Propositional Logic.
- d. Find the order and degree of the following recurrence relation:-

$$a_n - 3 a_{n-1} + 2 a_{n-2} = 0.$$

- e. State the Principle of Mathematical Induction.
- f. Prove that (I,+) is a semi-group where I be the set of all positives even integers and "+" be the ordinary addition operation.
- g. Define the Well-ordered set with example.

SECTION B

2. Attempt any *three* of the following:

 $7 \times 3 = 21$

- a. In a survey it is found that 21 people like product A, 26 people like product B and 29 like product C. If 14 people like products A and B; 15 people like products B and C; 12 people like products C and A; and 8 people like all the three products. Find:
 - i) How many people are surveyed in all?
 - ii) How many like product C only?
- b. Prove that the set $G=\{1,2,3,4,5,6\}$ is a finite Abelian Group of order 6 under the multiplication modulo 7, as the composition in G.
- c. Solve the following recurrence relation: $a_n 7a_{n-1} + 12a_{n-2} = n.4^n$.
- d. Define the Term Tautology and Contradiction. Show that : $(p \rightarrow q) \land (r \rightarrow q) \equiv (p \ V \ r) \rightarrow q$.
- e. If $A = \{1,2,3,5,6,10,15,30\}$ be ordered by the relation "a divides b". Then draw the Hesse diagram including all steps.

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) If $A = \{a,b,c\}$ and $R = \{(a,b), (b,c), (c,a)\}$ be a relation on Set A. Then find Symmetric and Reflexive Closure of R.
- (b) Define the composition of function. And If $X = \{1,2,3\}$, $Y = \{p,q\}$ and $Z = \{a,b\}$ and the functions f and g are define as:

$$f: X \to Y$$
 be $f = \{(1,p), (2,p), (3,q)\}$ and $g: Y \to Z$ be $g = \{(p,q), (q,b)\}$ then find $g \circ f$ and $f \circ g$.

Sub Code: RAS207

4. Attempt any *one* part of the following:

Define the generating function and find out the generating function of the following series:

i. 1,0,0,1,0,0,1,0,0.....

ii. $a_r = (r+1).3^r$

(b) By the Principle of Mathematical Induction show that : $n^3 + 2n$ is divisible by 3 for $n \ge 1$.

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

(a) If $G = (\{a, b\}, *)$ is a semi group, where a*a=b, then show that

i). a*b=b*a

ii). b * b = b

(b) Show that the Set of cube roots of unity is an abelian group with respect to multiplication.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Let $A = \{1,2,3\}$ and P(A) be its power set. Show that $(P(A), \subseteq)$ is a lattice.
- (b) Define the Isomorphic Lattice. Let $A = \{1,2,3,6\}$ and Let \leq the divisibility relation on A and let $B = \{ \phi, \{a\}, \{b\}, \{a, b\} \}$ and let $G \leq$ be the usual relation "is subset of " of set theory .Then show that (A, \leq) and (B, G) are isomorphic.

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) State and Prove the Associative law of algebra of proposition.
- (b) Define the term Arguments. Prove the validity of the following argument "If I get the job and work hard, then I will get promoted. If I get promoted, then I will be happy. I will not be happy. Therefore, either I will not get the job or I will not work hard'.