

Printed Page: 1 of 2 Subject Code: RAS207

Roll No:

MCA(Integrated) (SEM II) THEORY EXAMINATION 2021-22 DISCRETE MATHEMATICS FOR MCA

Time: 3 Hours

Total Marks: 70

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

Attempt all questions in brief.

 $2 \times 7 = 14$

, c³.	Let A and B be two finite sets such that $n(A) = 20$, $n(B) = 28$ and $n(A \cup B) = 36$, find $n(A \cap B)$.
V	What do you mean by Identity Relation? Write down the Identity Relation for the Set $A = \{1, 2, 3\}$.
æ.	What do you mean by Non-homogeneous recurrence relation?
. 10	Define the Commutative group.
· e	What is the difference between Tautology and Contradiction?
1 5	State the De-Morgan's Law of Propositional Logic.
2	What do you mean by Complemented Lattice?
L	<u></u>

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

c.•	If set A = {1,2,3,6,12} and R be the relation in set A which is defined by "advides b" then show that R is a Poset in set A and also draw the Hasse diagram.
d.	Solve the following: $a_n - 5a_{n-1} + 6a_{n-2} = 7^n$.
c. •	If p, q and r are any three statements, then using the truth table prove that: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$, ii) $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
b.	Define the Permutation group. If A= {1,2,3,4,5} then: find (1 3) 0 (2 4 5) 0 (2 3)
a.	Define the function and Relation. Explain the difference between function and Relation with example.

SECTION C

3. Attempt any one part of the following:

 $7 \times 1 = 7$

(a)	In a group of 100 persons, 72 people can speak English and 43 can speak
ļ	French. How many can speak English only? How many can speak French only
!	and how many can speak both English and French?
(b)	Consider the following relation on set $A = \{1,2,3,4,5,6,7\}$, given by $R = \{1,2,3,4,5,6,7\}$
	$\{(i,j): i-j =2\}$ on set A.D. Determine whether R is reflexive, symmetric and
	transitive.

Printed Page: 2 of 2 Subject Code: RAS20*

DAPER ID-421466

Roll No:

MCA(Integrated) (SEM II) THEORY EXAMINATION 2021-22 DISCRETE MATHEMATICS FOR MCA

Atter	mpt any one part of the following:] = /
こて	Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction: $n^3 - 4n + 6$ is divisible by 3 for all Prove by Mathematical Induction Inducti	1 n-1.
(b)	Solve the following Recurrence Relation Using Generaling $a_n - 9a_{n-1} + 20a_{n-2} = 0$ with initial conditions $a_0 = -3$ and a_1	=======================================
Attor	-10. mpt any <i>one</i> part of the following:	= 7
Allei		
(a)	of the inverse taken in the reverse order.	
(b)	or and a funity form an abelian group under the	
tten	mpt any <i>one</i> part of the following: 7 x 1 =	= 7
(a)	Using truth table, show that: $p \rightarrow (q \lor r) \equiv (p \rightarrow q) \lor (p \rightarrow r)$.	
(b)	Represent the following argument symbolically and determine whether the argument is valid:	,
	Either Ram is not guilty or Shyam is telling the truth.	
	Shyam is not telling the truth.	

	Therefore, Ram is not guilty.	
ttem	opt any one part of the following: $7 \times 1 = 7$	7
(a)	Define the Distributive Lattice and Modular Lattice with example. Also prove that every Distributive Lattice is Modular.	 -
(b)	Define the Poset and draw the Hasse diagram for the Partial order $\{(A, B): A \subseteq B\}$ on the power set $P(S)$ where $S = \{a,b,c\}$.	ing
	,	