

NMCA214
(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID : 214221


MCA
(SEM. II) THEORY EXAM. 2014-15 INTRODUCTION TO AUTOMATA THEORY AND LANGUAGES

Time: 3 Hours]

Note : Attempt the questions as indicated.

Q1. Attempt any four questions from the following : $5 \times 4=20$
a) Let $L_{1}$ and $L_{2}$, be two language sets then compute $L_{1}+$ $L_{2}$, if $L_{2}=\varepsilon$ (null string).
b) Construct a NFA that accepts the set of all strings containing at least two 0 's where $\sum=\{0,1\}$.
c) Define a NFA and compute its language.
d) Prove that $\left(111^{*}\right)^{*}=(11+111)^{*}$.
c) Construct a NFA with $\varepsilon$-moves for the regular expres$\operatorname{sion}(01) *(0+1)^{*}$.
f) Show that if $L$ is a regular language, then $L^{n}$ is regular for $n \geq 0$.

Q2. Attempt any two questions from the following :- $10 \times 2=20$
a) Define regular expression. Describe the language denoted by the regular expression $(0+1)^{*} 1^{*}(0+1)^{*}$.
b) Let $\sum=\{0,1\}$, then prove that $L=\left\{0^{\mathrm{i}} 11^{\mathrm{j}} \mid \mathrm{j}\right.$ is a multiple of i$\}$ is not regular.
c) Prove that complement of a regular language is closed.

Q3. Attempt any two questions from the following: $10 \times 220$
a) Find the CF G for the language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{i}} \mathrm{b}^{\mathrm{i}} \mathrm{c}^{\mathrm{k}} \mid \mathrm{i}=\mathrm{j}\right.$ or $\left.\mathrm{i}=\mathrm{k}\right\}$.
b) Show that the language $L=\left\{0^{n} 1^{m} \mid m=n^{2}\right\}$ is not aCFL.
c) Show that the grammar is ambiguous and find an equivalent unambiguous grammar.

$$
S \rightarrow S S|a| b
$$

Q4. Attempt any two questions from the following: $10 \times 2=20$
a) What is a push down automaton (PDA)? Describe the acceptance of a PDA.
b) Construct the PDA for the language $L=\left\{\mathrm{w}^{\mathrm{R}} \mid \mathrm{w}\right.$ in $\{0$, $\left.1\}^{*}\right\}$, where $R$ stands for reverse string.
c) Prove that $L=\left\{a^{n} b^{2 n} a^{n} \mid n \geq 0\right\}$ is not a CFL.

Q5. Attempt any two questions from the following: $10 \times 2=20$
a) Draw a transition diagram for a Turing machine accepting the language $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.
b) Write a short note on any one of the following :
(i) Rice's Theorem
(ii) $P$ and NP class of problems
c) Define the recursive enumerable language. Disprove that the complement of a recursive enumerable language is closed.

