

Printed Pages: 4

MCA302

(Following Paper ID and Roll No.	to b	e fi	lled	in	your	Answ	er B	ook)	
Roll No.						, in the second			

M.C.A

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 DESIGN AND ANALYSIS OF ALGORITHMS

Time: 3 Hours]

[Total Marks: 709

Note: Attempt all questions.

1 Attempt any four questions :

4×5=20

- (a) Give an asymptotically tight bound $(i, e, \theta(\cdot))$ on the summation $\sum_{k=1}^{n} K^{r}$, where $r \ge 0$ is a constant.
- (b) Suppose $T_1(n) = O(f(n))$ and $T_2(n) = O(f(n))$ which of the following are true? Justify

(i)
$$T_1(n) + T_2(n) = O(f(n))$$

(ii)
$$\frac{T_1(n)}{T_2(n)} = O(1)$$

(iii)
$$T_1(n) = O(T_2(n))$$

- (c) Solve the average recurrence for quicksort.
- (d) Prove that the height of a heap with n nodes is equal to $\lceil \log_2 n \rceil$.

 [Contd...

- http://www.aktuonline.com
- Illustrate the operation of counting-sort on the 123 array $A = \langle 7, 1, 3, 1, 2, 4, 5, 7, 2, 4, 3 \rangle$.
- Modify bucket-sort algorithm to preserves it (f)linear expected running time and makes its worst-case running time $O(n \lg n)$.
- 2 Attempt any four questions:

- $4 \times 5 = 20$
- (a) Insert items with the following keys (in the given order) into an initially empty binary search tree : 30, 40, 24, 58, 48, 26, 11, 13. Draw the tree after each insertion.
- Prove that the height of an AVL tree with n nodes is at most 1.4404 log n.
- Design an implementation of the following abstract data type with the set of operations: insert (x, T) insert item x into the set T delete (K, T) delete the Kth smallest element from T
 - member (x, T) return true if $x \in T$ all operations on an n item set are to take time $O(\log n)$.
- What is Fibonacci heap? Illustrate the union (d). process of two Fibonacci-heaps.
- Draw the 11-item hash table resulting from (e) hashing the keys 12,44,13,88,23,94,11,39,20,16 and 5, using the hash function
 - $i_i, i_j = (2i+5) \mod 11$ and assuming collisions are handled by linear probing.
- (f) Hery many binary search trees are possible with n number of nodes.

- 3 Attempt any two parts of the following: $10 \times 2 = 20$
 - (a) Design a dynamic programming algorithm for the change-making problem; given an amount n and unlimited quantities of coins of each of the denominations d₁, d₂, ..., d_m find the smallest number of coins that add up to n or indicate that the problem does not have a solution.
 - (b) A unit length closed interval on the real-line is an interval [x, 1+x] describe an O(n) algorithm that given input set $X = \{x_1, x_2, \ldots, x_n\}$ determines the smallest set of unit length closed intervals that contains all of the given points.

Assume $x_1 < x_2 < ... < x_n$.

(c) Apply back tracking to the problem of finding a Hamiltonian circuit in the following graph:

4 Attempt any two parts of the following: 10×2=20
(a) Solve the all-pairs shortest path problem for the diagraph with the weight matrix:

 $\begin{bmatrix} 0 & 2 & \infty & 1 & 8 \\ 6 & 0 & 3 & 2 & \infty \\ \infty & \infty & 0 & 4 & \infty \\ \infty & \infty & 2 & 0 & 3 \\ 3 & \infty & \infty & \infty & 0 \end{bmatrix}$

Discuss the Kruskas's algorithm and find the minimum cost spanning tree of the following graph:

(c) Show that, given a maximum flow in a network with m edges, a minimum cut of N can be computed in O(m) time.

Attempt any two parts of the following: $10\times2=20$

- (a) Draw a table representing the KMP failure function for the pattern string
 " C G T A C G T T C G T A C "
- (b) Prove that if $NP \neq CO NP$ then $P \neq NP$.
- (c) Write a nonrecursive version of algorithm. Euclid GCD and Extended Euclic GCD.