Printed Pages: 4
(Following Paper ID and Roll No. to be filled in your Answer Book)

M.C.A
(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 DESIGN AND ANALYSIS OF ALGORITHMS

Tine: 3 Hours]
[Tom Marks: 70
Note : Attempt all questions.
-
1 Attempt any four questions
(a) Give an asymptotically tight bound (i,e o()) on
the summation $\sum_{k=1}^{n} K^{r}$, where $r \geq 0$ is a constant.
(b) Suppose $T_{1}(n)=O(f(n))$ and $T_{2}(n)=O(f(n)$ which of the following are true ? Justify

$$
\begin{equation*}
T_{1}(n)+T_{2}(n)=O(f(n)) \tag{i}
\end{equation*}
$$

(ii) $\frac{T_{1}(n)}{T_{2}(n)}=O(1)$
(iii) $T_{1}(n)=0\left(T_{2}(n)\right)$
(c) Solve the average recurrence for quicksort.
(d) Prove that the height of a heap with n nodes is equal to $\left[\log _{2} n\right]$.

http://www.aktuonline.com
(a) Mastrate the operation of counting-sort on the

$$
2 \text { ETay } A=\langle 7,1,3,1,2,4,5,7,2,4,3\rangle .
$$

(f) Modify bucket-sort algorithm to preserves it linear expected running time and makes its worst-case running time $O(n \lg n)$.

2 Attempt any four questions $4 \times 5=20$
(a) Insert items with the following keys (in the given order) into an initially empty binary search tree $30,40,24,58,48,26,11,13$. Draw the tree after each insertion.
(4) Prove that the height of an AVL tree with n nodes is at most $1.4404 \log n$.
(c) Design an implementation of the following abstract data type with the set of operations : insert (x, T) insert item x into the set T delete (K, T) delete the $\mathrm{K}^{\text {th }}$ smallest element from T
member (x, T) return true if $x \in T$
all operations on an n item set are to take time $O(\log n)$.
(d). What is Fibonacci heap ? Illustrate the union process of two Fibonacci-heaps.
(e) Draw the 11 -item hash table resulting from lashing the keys $12,44,13,88,23,94,11,39,20,16$ and 5 using the hash function
$\therefore \therefore:=(2 i+5) \bmod 11$ and assuming collisions We bandled by linear probing.
(a) in: man binary search trees are possible with n -...ase- nodes.

3 Attempt any two parts of the following $10 \times 2=20$
(a) Design a dynamic programming algorithm for the change-making problem; given an amount n and unlimited quantities of coins of each of the denominations $\mathrm{d}_{1}, \mathrm{~d}_{2}, \ldots, \mathrm{~d}_{\mathrm{m}}$ find the smallest number of coins that add up to n or indicate that the problem does not have a solution.
(b) A unit length closed interval on the real-line is an interval $[x, 1+x]$ describe an $O(n)$ algorithm that given input set $X=\left\{x_{1}, x_{2}, \ldots ., x_{n}\right\}$ determines the smallest set of unit length closed intervals that contains all of the given points.
Assume $x_{1}<x_{2}<\ldots \ldots<x_{n}$.
(c) Apply back tracking to the problem of finding a Hamiltonian circuit in the following graph :

4 . Attempt any two parts of the following : $\quad 10 \times 2=20$
(a) Solve the all-pairs shortest path problem for the diagraph with the weight matrix

$$
\left[\begin{array}{ccccc}
0 & 2 & \infty & 1 & 8 \\
6 & 0 & 3 & 2 & \infty \\
\infty & \infty & 0 & 4 & \infty \\
\infty & \infty & 2 & 0 & 3 \\
3 & \infty & \infty & \infty & 0
\end{array}\right]
$$

|Contd...
ic. Discuss the Kruskas's algorithm and find the minimum cost spanning tree of the following graph

(c) Show that, given a maximum flow in a network with m edges, a minimum cut of N can be computed in $\mathrm{O}(\mathrm{m})$ time.

Attempt any two parts of the following $10 \times 2=20$
(a) Draw a table representing the KMP failure function for the pattern string
" C G TAC G T T C G T A C"
(e) Prove that if $N P \neq C O-N P$ then $P \neq N P$.
(c) Write a nonrecursive version of algorithm. Euclid GCD and Extended Euclic GCD.

