Printed Pages: 02 Sub Code:NBC401

Paper Id: 1 9 4 4 0 1 Roll No.

MCA (DUAL DEGREE) (SEM. IV) THEORY EXAMINATION 2017-18 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Explain the floating point representation of numbers
- b. Find the absolute and relative error if $\frac{2}{3}$ is approximated by 0.6667.
- c. Write an iterative formula using Newton-Raphson method to find the square root of a positive number.
- d. Prove that $\mu \delta = \frac{1}{2} \Delta E^{-1} + \frac{1}{2} \Delta$
- e. Write the Lagrange Interpolation formula.
- f. Write Trapezoidal's formula for numerical integration.
- g. The two regression lines are 8x 10y + 66 = 0 and 40x 18y = 214. Find the mean values of x and y.
- h. Explain the term Pi-Chart.
- i. What is the difference between interpolation and extrapolation?
- j. Differentiate between ill conditioned and well conditioned methods.

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

- a. Find the root of the tanx + tanhx = 0 which lies in the interval (1.6, 3.0) correct to four significant digits using method of false position.
- b. Apply a central difference formula to obtain f(32) given that f(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794
- c. Apply Bessel's formula to obtain value of y for x = 25, from the following table

X	20	24	28	32
у	2854	3162	3544	3992

d. Solve the following equations by using Gauss-Seidal iteration method

$$27x + 6y - z = 85$$

$$6x + 15y + 2z = 72$$

$$x + y + 54z = 110$$

e. Using Taylor's series, find the solution of the diff. equation xy' = x - y, y(2) = 2 at x = 2.1 correct to five decimal places.

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Find a real root of the equation $x = e^{-x}$ using the Newton-Raphson method.
- (b) Explain, what do you understand by rate of convergence and find the rate of convergence of Bisection method.

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Derive the Newton's Forward Difference Formula.
- (b) Compute the value of f(x) for x = 2.5 from the following table :

		\ /		U		
Х		1	2	3	4	
f	(\mathbf{x})	1	8	27	64	

Using Lagrange's interpolation method.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Find $\int_0^6 \frac{e^x}{1+x} dx$ approximately using Simpson's $3/8^{th}$ rule on integration.
- (b) Find y(2) if y(x) is the solution of $\frac{dy}{dx} = \frac{1}{2}(x + y)$ using Runge-Kutta method, in two steps taking h = 1.0, Given y(0) = 2.0.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) What is curve fitting? Explain the method of least squares to fit a curve.
- (b) Determine the constants a and b by the method of least squares such that $y = ae^{bx}$ fits the following data:

X	1	5	7	9	12
у	10	15	12	15	21

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) The following table gives age (x) in years of cars and annual maintenance cost (y) in hundred rupees:

X	1	3	5	7	9
у	15	18	21	23	22

Estimate the maintenance cost for a 4 year old car after finding the regression equation.

- (b) Write short notes on
 - i) Test of significance
 - ii) Regression Analysis
 - iii) Chi-Square test