(Subject Code and Roll No. to be filled in your Answer Book)

Roll No.

M.Tech.

(SEM. I) THEORY EXAMINATION 2012-13

NUMERICAL METHODS AND COMPUTER PROGRAMMING

Time: 3 Hours Total Marks: 100

Note: Attempt any **five** questions of the following. All questions carry equal marks.

- 1. (a) Using Newton-Raphson method, find a real root of the equation $\sin x = 1 + x^3$.
 - (b) Find the real root of the equation $x^3 6x^2 + 11x 6 = 0$ by Graeffe's root square method
- 2. (a) Using Everett's formula, evaluate f(25) from the following table:

х	20	24	28	32
f(x)	2854	3162	3544	3992

(b) Using Newton's divided difference formula, evaluate f(8) and f(15) given that:

х	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

1

- 3. (a) Find the least squares approximation of second degree for $f(x) = x^4$ in the range [-1, 1] by using chebyshev polynomials.
 - (b) Find the polynomial, which take the values as given in the table below by using Gauss's forward difference formula:

х	1	2	3	4 -	5
у	. 1	-1	1	-1	-1

- 4. (a) Solve the system 2x + y + 4z = 12, 8x + 3y + 2z = 20, 4x + 11y + z = 33 by Crout's method.
 - (b) Find the eigen values and eigen vectors of the matrix

$$A = \begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}.$$

5. (a) From the following table the value of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ for x = 1.2,

Х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

(b) Evaluate $\int_{0}^{10} \frac{dx}{1+x^2}$ by using (i) Simpson's 3/8 rule (ii)

Weddle's rule. Compare the results with actual value.

- 6. (a) Determine the value of y when x = 0.1 given that y(0) = 1 and $y' = x^2 + y$ by using Eulers modified method.
 - (b) Given that $y' = x^2 y$, y(0) = 1 find y(0.1), y(0.2) using Runge-Kutta fourth order method.
- 7. (a) Use the predictor-corrector formula solve for $10 \frac{dy}{dx} = x^2 + y^2$, y(0) = 1 for $0.5 \le x \le 1.0$.
 - (b) Find the value of sin 54°, it is given that:

x	30	35	40	45	50	55
sin x	0.5000	0.5736	0.6428	0.7071	0.7660	0.8192

-15285