Printed pages: 01 Sub Code: MTME041

Paper Id 2 4 0 2 0 4

Roll No.

M. TECH.

(SEM -II) THEORY EXAMINATION 2018-19 OPTIMIZATION TECHNIQUES & DESIGN OF EXPERIMENTS

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. What is Descent method?
- b. What is optimization? Give engineering application of optimization.
- c. Define Fabonacci numbers.
- d. Explain constraints with example.
- e. Explain objective function with example.
- f. What is an active constraint?
- g. Define integer linear programming and write its type.

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

- a. Write algorithm of Golden section search method?
- b. Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1 x_2 + x_1^2$ from the starting point $X_1 = \{0\}$ using Powell's method.
- c. In a certain reservoir pump installation, the first cost of the pipe is given by (100D+50D²) where D is the diameter of the pipe in cm. The cost of the reservoir decreases with an increase in the quantity of fluid handled and is given by 20/Q where Q is the rate at which the fluid is handled (cubic meters per second). The pumping cost is given by (300Q²/D⁵). Find the optimal size of the pipe and the amount of fluid handled for minimum overall cost.
- d. Explain Fletcher reeves method.
- e. What is dynamic programming? Write it's application.

SECTION C

3. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1 x_2 + x_1^2$ with starting point (0,0) using univariate method.
- (b) Minimize $f(x_1, x_2) = x_1 x_2 + 2x_1^2 + 2x_1 + x_2 + x_1^2$ from the starting point $X_1 = \{0\}$ using Powell's method

4. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Show that DFP (DAVIDON-FLETCHER-POWELL) method is a conjugate gradient method.
- (b) Minimize $4x_1^2+3x_2^2-5x_1x_2-8x_1$ starting from point(0,0) using powell's method. Perform four iteration.

Printed pages: 01 Sub Code: MTME041

5. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Minimize $4x_1^2+3x_2^2-5x_1x_2-8x_1$ starting from point(0,0) using powell's method. Perform four iteration.
- (b) It has been decided to shift grain from a warehouse to a factory in an open rectangular box of length x_1 meters, width x_2 meters and height x_3 meters. The bottom sides and the ends of the box cost, respectively Rs 80, Rs 10 & Rs 20 /m². It costs Rs 1 for each round trip of the box. Assuming that the box will have no salvage value, find the minimum cost of transporting 80 m³ of grain.

6. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Max $Z = -x_1 + 4x_2$ Subject to $-10 x_1 + 20 x_2 \le 22 5 x_1 + 10 x_2 \le 49 x_1 \le 5$ & $x_i \ge 0$, x_i 's are integers using the branch and bound method
- (b) Solve the following all integer programming problem using the branch and bound method

7. Attempt any *one* part of the following:

 $7 \times 1 = 7$

- (a) Solve the following integer programming problem using Gomory's cutting plane algorithm.
 - Maximize $Z=X_1+X_2$ Subject to the constraints (i) $3X_1+2X_2 \le 5$, (ii) $X_2 \le 2$ and $X_1, X_2 \ge 0$ and are integers
- (b) Maximize $Z=2X_1+3X_2$ Subject to the constraint (i) $6X_1+5X_2 \le 25$ (ii) $X_1+3X_2 \le 10$ and $X_1, X_2 \ge 0$ and integers.